We propose a realization of a transformation-based acoustic temporal cloak using an active closed-loop control approach to an equivalent electromagnetic problem. Unlike the more common spatial cloaks, the goal of which is hiding fixed objects from detection, the goal of the temporal cloak is hiding the occurrence of events during a finite period of time. In electromagnetic systems, in which events represent, for example, leakage of signals from transmission lines or optical fibers, temporal cloaking solutions usually rely on nonlinear phenomena related to the fibers properties or on modulating the properties of the propagation medium itself. In particular, the transformation-based solution requires modulating the constitutive parameters of the medium in both space and time. In acoustic systems, an event may represent an object crossing a propagation channel and temporarily blocking it. Our control approach is fully linear, where the required change in the medium parameters is programmed into the controllers and created by external actuators in real-time. This cloaking system keeps the physical medium unchanged and enables re-programing of the cloaking parameters upon request. We demonstrate our solution in a simulation of a one-dimensional water channel.

1.
D.
Schurig
,
J. J.
Mock
,
B.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
, “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
,
977
980
(
2006
).
2.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
(
2007
).
3.
J.
Li
and
J. B.
Pendry
, “
Hiding under the carpet: A new strategy for cloaking
,”
Phys. Rev. Lett.
101
,
203901
(
2008
).
4.
J.
Valentine
,
J.
Li
,
T.
Zentgraf
,
G.
Bartal
, and
X.
Zhang
, “
An optical cloak made of dielectrics
,”
Nat. Mater.
8
,
568
571
(
2009
).
5.
A.
Alù
, “
Mantle cloak: Invisibility induced by a surface
,”
Phys. Rev. B
80
,
245115
(
2009
).
6.
B.-I.
Popa
,
L.
Zigoneanu
, and
S. A.
Cummer
, “
Experimental acoustic ground cloak in air
,”
Phys. Rev. Lett.
106
,
253901
(
2011
).
7.
X.
Zhu
,
L.
Feng
,
P.
Zhang
,
X.
Yin
, and
X.
Zhang
, “
One-way invisible cloak using parity-time symmetric transformation optics
,”
Opt. Lett.
38
,
2821
2824
(
2013
).
8.
L.
Zigoneanu
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Three-dimensional broadband omnidirectional acoustic ground cloak
,”
Nat. Mater.
13
,
352
355
(
2014
).
9.
S.-W.
Fan
,
S.-D.
Zhao
,
L.
Cao
,
Y.
Zhu
,
A.-L.
Chen
,
Y.-F.
Wang
,
K.
Donda
,
Y.-S.
Wang
, and
B.
Assouar
, “
Reconfigurable curved metasurface for acoustic cloaking and illusion
,”
Phys. Rev. B
101
,
024104
(
2020
).
10.
H.
Chen
,
C. T.
Chan
, and
P.
Sheng
, “
Transformation optics and metamaterials
,”
Nat. Mater.
9
,
387
396
(
2010
).
11.
J.
Zhang
,
J. B.
Pendry
, and
Y.
Luo
, “
Transformation optics from macroscopic to nanoscale regimes: A review
,”
Adv. Photonics
1
,
014001
(
2019
).
12.
M.
Fridman
,
A.
Farsi
,
Y.
Okawachi
, and
A. L.
Gaeta
, “
Demonstration of temporal cloaking
,”
Nature
481
,
62
65
(
2012
).
13.
J. M.
Lukens
,
D. E.
Leaird
, and
A. M.
Weiner
, “
A temporal cloak at telecommunication data rate
,”
Nature
498
,
205
208
(
2013
).
14.
I.
Chremmos
, “
Temporal cloaking with accelerating wave packets
,”
Opt. Lett.
39
,
4611
4614
(
2014
).
15.
F.
Zhou
,
J.
Dong
,
S.
Yan
, and
T.
Yang
, “
Temporal cloak with large fractional hiding window at telecommunication data rate
,”
Opt. Commun.
388
,
77
83
(
2017
).
16.
B.
Li
,
X.
Wang
,
J.
Kang
,
Y.
Wei
,
T.
Yung
, and
K. K.
Wong
, “
Extended temporal cloak based on the inverse temporal Talbot effect
,”
Opt. Lett.
42
,
767
770
(
2017
).
17.
F.
Zhou
,
S.
Yan
,
H.
Zhou
,
X.
Wang
,
H.
Qiu
,
J.
Dong
,
L.
Zhou
,
Y.
Ding
,
C.-W.
Qiu
, and
X.
Zhang
, “
Field-programmable silicon temporal cloak
,”
Nat. Commun.
10
,
2726
(
2019
).
18.
M. W.
McCall
,
A.
Favaro
,
P.
Kinsler
, and
A.
Boardman
, “
A spacetime cloak, or a history editor
,”
J. Opt.
13
,
024003
(
2011
).
19.
P.
Kinsler
and
M. W.
McCall
, “
Cloaks, editors, and bubbles: Applications of spacetime transformation theory
,”
Ann. Phys.
526
,
51
62
(
2014
).
20.
W.
Akl
and
A.
Baz
, “
Multi-cell active acoustic metamaterial with programmable bulk modulus
,”
J. Intell. Mater. Syst. Struct.
21
,
541
556
(
2010
).
21.
B.-I.
Popa
,
D.
Shinde
,
A.
Konneker
, and
S. A.
Cummer
, “
Active acoustic metamaterials reconfigurable in real time
,”
Phys. Rev. B
91
,
220303
(
2015
).
22.
N.
Börsing
,
T. S.
Becker
,
A.
Curtis
,
D.-J.
van Manen
,
T.
Haag
, and
J. O.
Robertsson
, “
Cloaking and holography experiments using immersive boundary conditions
,”
Phys. Rev. Appl.
12
,
024011
(
2019
).
23.
T.
Hofmann
,
T.
Helbig
,
C. H.
Lee
,
M.
Greiter
, and
R.
Thomale
, “
Chiral voltage propagation and calibration in a topolectrical Chern circuit
,”
Phys. Rev. Lett.
122
,
247702
(
2019
).
24.
L.
Sirota
,
F.
Semperlotti
, and
A. M.
Annaswamy
, “
Tunable and reconfigurable mechanical transmission-line metamaterials via direct active feedback control
,”
Mech. Syst. Signal Process.
123
,
117
130
(
2019
).
25.
L.
Sirota
and
A. M.
Annaswamy
, “
Active wave suppression in the interior of a one-dimensional domain
,”
Automatica
100
,
403
406
(
2019
).
26.
L.
Sirota
and
A. M.
Annaswamy
, “
Active boundary and interior absorbers for one-dimensional wave propagation: Application to transmission-line metamaterials
,”
Automatica
117
,
108855
(
2020
).
27.
T. S.
Becker
,
N.
Börsing
,
T.
Haag
,
C.
Bärlocher
,
C. M.
Donahue
,
A.
Curtis
,
J. O.
Robertsson
, and
D.-J.
van Manen
, “
Real-time immersion of physical experiments in virtual wave-physics domains
,”
Phys. Rev. Appl.
13
,
064061
(
2020
).
28.
C.
Scheibner
,
W. T.
Irvine
, and
V.
Vitelli
, “
Non-Hermitian band topology and skin modes in active elastic media
,”
Phys. Rev. Lett.
125
,
118001
(
2020
).
29.
M. I.
Rosa
and
M.
Ruzzene
, “
Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions
,”
New J. Phys.
22
,
053004
(
2020
).
30.
C.
Cho
,
X.
Wen
,
N.
Park
, and
J.
Li
, “
Digitally virtualized atoms for acoustic metamaterials
,”
Nat. Commun.
11
,
251
(
2020
).
31.
A.
Ghatak
,
M.
Brandenbourger
,
J.
van Wezel
, and
C.
Coulais
, “
Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial
,”
Proc. Natl. Acad. Sci.
117
,
29561
29568
(
2020
).
32.
T.
Kotwal
,
F.
Moseley
,
A.
Stegmaier
,
S.
Imhof
,
H.
Brand
,
T.
Kießling
,
R.
Thomale
,
H.
Ronellenfitsch
, and
J.
Dunkel
, “
Active topolectrical circuits
,”
Proc. Natl. Acad. Sci.
118
,
e2106411118
(
2021
).
33.
M.
Fruchart
,
R.
Hanai
,
P. B.
Littlewood
, and
V.
Vitelli
, “
Non-reciprocal phase transitions
,”
Nature
592
,
363
369
(
2021
).
34.
J. W.
You
,
Q.
Ma
,
Z.
Lan
,
Q.
Xiao
,
N. C.
Panoiu
, and
T. J.
Cui
, “
Reprogrammable plasmonic topological insulators with ultrafast control
,”
Nat. Commun.
12
,
5468
(
2021
).
35.
N.
Geib
,
A.
Sasmal
,
Z.
Wang
,
Y.
Zhai
,
B.-I.
Popa
, and
K.
Grosh
, “
Tunable nonlocal purely active nonreciprocal acoustic media
,”
Phys. Rev. B
103
,
165427
(
2021
).
36.
X.
Li
,
Y.
Chen
,
R.
Zhu
, and
G.
Huang
, “
An active meta-layer for optimal flexural wave absorption and cloaking
,”
Mech. Syst. Signal Process.
149
,
107324
(
2021
).
37.
K.
Stojanoska
and
C.
Shen
, “
Non-Hermitian planar elastic metasurface for unidirectional focusing of flexural waves
,”
Appl. Phys. Lett.
120
,
241701
(
2022
).
38.
J.
Cornelius
,
J.
Liu
, and
M.
Brio
, “
Finite-difference time-domain simulation of spacetime cloak
,”
Opt. Express
22
,
12087
12095
(
2014
).
You do not currently have access to this content.