This study presents the growth and characterization of an 8.1 μm-emitting, InGaAs/AlInAs/InP-based quantum cascade laser (QCL) formed on an InP-on-Si composite template by metalorganic chemical vapor deposition (MOCVD). First, for the composite-template formation, a GaAs buffer layer was grown by solid-source molecular-beam epitaxy on a commercial (001) GaP/Si substrate, thus forming a GaAs/GaP/Si template. Next, an InP metamorphic buffer layer (MBL) structure was grown atop the GaAs/GaP/Si template by MOCVD, followed by the MOCVD growth of the full QCL structure. The top-surface morphology of the GaAs/GaP/Si template before and after the InP MBL growth was assessed via atomic force microscopy, over a 100 μm2 area, and no antiphase domains were found. The average threading dislocation density (TDD) for the GaAs/GaP/Si template was found to be ∼1 × 109 cm−2, with a slightly lower defect density of ∼7.9 × 108 cm−2 after the InP MBL growth. The lasing performance of the QCL structure grown on Si was compared to that of its counterpart grown on InP native substrate and found to be quite similar. That is, the threshold-current density of the QCL on Si, for deep-etched ridge-guide devices with uncoated facets, is somewhat lower than that for its counterpart on native InP substrate, 1.50 vs 1.92 kA/cm2, while the maximum output power per facet is 1.64 vs 1.47 W. These results further demonstrate the resilience of QCLs to relatively high residual TDD values.

1.
N.
Margalit
,
C.
Xiang
,
S. M.
Bowers
,
A.
Bjorlin
,
R.
Blum
, and
J. E.
Bowers
, “
Perspective on the future of silicon photonics and electronics
,”
Appl. Phys. Lett.
118
(
22
),
220501
(
2021
).
2.
J. A.
Smith
,
D.
Jevtics
,
B.
Guilhabert
,
M. D.
Dawson
, and
M. J.
Strain
, “
Hybrid integration of chipscale photonic devices using accurate transfer printing methods
,”
Appl. Phys. Rev.
9
(
4
),
041317
(
2022
).
3.
E.
Tournié
,
L.
Monge Bartolome
,
M.
Rio Calvo
,
Z.
Loghmari
,
D. A.
Díaz-Thomas
,
R.
Teissier
,
A. N.
Baranov
,
L.
Cerutti
, and
J.-B.
Rodriguez
, “
Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates
,”
Light: Sci. Appl.
11
(
1
),
165
(
2022
).
4.
D.
Botez
,
J. D.
Kirch
,
C.
Boyle
,
K. M.
Oresick
,
C.
Sigler
,
H.
Kim
,
B. B.
Knipfer
,
J. H.
Ryu
,
D.
Lindberg
,
T.
Earles
,
L. J.
Mawst
, and
Y. V.
Flores
, “
High-efficiency, high-power mid-infrared quantum cascade lasers [Invited]
,”
Opt. Mater. Express
8
(
5
),
1378
(
2018
).
5.
Z.
Loghmari
,
J.-B.
Rodriguez
,
A. N.
Baranov
,
M.
Rio-Calvo
,
L.
Cerutti
,
A.
Meguekam
,
M.
Bahriz
,
R.
Teissier
, and
E.
Tournié
, “
InAs-based quantum cascade lasers grown on on-axis (001) silicon substrate
,”
APL Photonics
5
(
4
),
041302
(
2020
).
6.
H.
Nguyen-Van
,
A. N.
Baranov
,
Z.
Loghmari
,
L.
Cerutti
,
J.-B.
Rodriguez
,
J.
Tournet
,
G.
Narcy
,
G.
Boissier
,
G.
Patriarche
,
M.
Bahriz
,
E.
Tournié
, and
R.
Teissier
, “
Quantum cascade lasers grown on silicon
,”
Sci. Rep.
8
(
1
),
7206
(
2018
).
7.
K.
Kinjalk
,
A.
Gilbert
,
A.
Remis
,
Z.
Loghmari
,
L.
Cerutti
,
G.
Patriarche
,
M.
Bahriz
,
R.
Teissier
,
A. N.
Baranov
,
J. B.
Rodriguez
, and
E.
Tournié
, “
Quantum cascade lasers monolithically integrated on germanium
,”
Opt. Express
30
(
25
),
45259
(
2022
).
8.
R.
Go
,
H.
Krysiak
,
M.
Fetters
,
P.
Figueiredo
,
M.
Suttinger
,
X. M.
Fang
,
A.
Eisenbach
,
J. M.
Fastenau
,
D.
Lubyshev
,
A. W. K.
Liu
,
N. G.
Huy
,
A. O.
Morgan
,
S. A.
Edwards
,
M. J.
Furlong
, and
A.
Lyakh
, “
InP-based quantum cascade lasers monolithically integrated onto silicon
,”
Opt. Express
26
(
17
),
22389
(
2018
).
9.
S.
Slivken
,
N.
Shrestha
, and
M.
Razeghi
, “
High power mid-infrared quantum cascade lasers grown on Si
,”
Photonics
9
(
9
),
626
(
2022
).
10.
S.
Slivken
and
M.
Razeghi
, “
High power, room temperature InP-based quantum cascade laser grown on Si
,”
IEEE J. Quantum Electron.
58
(
6
),
1
6
(
2022
).
11.
E.
Cristobal
,
M.
Fetters
,
A. W. K.
Liu
,
J. M.
Fastenau
,
A.
Azim
,
L.
Milbocker
, and
A.
Lyakh
, “
High peak power quantum cascade lasers monolithically integrated onto silicon with high yield and good near-term reliability
,”
Appl. Phys. Lett.
122
(
14
),
141108
(
2023
).
12.
S.
Xu
,
S.
Zhang
,
J. D.
Kirch
,
S.
Suri
,
N.
Pokharel
,
H.
Gao
,
H.
Kim
,
P.
Dhingra
,
M. L.
Lee
,
D.
Botez
, and
L. J.
Mawst
, “
∼8.5 μm-emitting InP-based quantum cascade lasers grown on GaAs by metal-organic chemical vapor deposition
,”
Appl. Phys. Lett.
121
(
17
),
171103
(
2022
).
13.
A.
Rajeev
,
B.
Shi
,
Q.
Li
,
J. D.
Kirch
,
M.
Cheng
,
A.
Tan
,
H.
Kim
,
K.
Oresick
,
C.
Sigler
,
K. M.
Lau
,
T. F.
Kuech
, and
L. J.
Mawst
, “
III-V superlattices on InP/Si metamorphic buffer layers for λ ≈ 4.8 μm quantum cascade lasers
,”
Phys. Status Solidi A
216
,
1800493
(
2018
).
14.
I.
Németh
,
B.
Kunert
,
W.
Stolz
, and
K.
Volz
, “
Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions
,”
J. Cryst. Growth
310
(
7–9
),
1595
1601
(
2008
).
15.
J. E.
Ayers
, “
The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction
,”
J. Cryst. Growth
135
(
1–2
),
71
77
(
1994
).
16.
J.
Huang
,
Q.
Lin
,
W.
Luo
,
L.
Lin
, and
K. M.
Lau
, “
GaAs on (001) Si templates for near-infrared InP quantum dot lasers
,”
J. Appl. Phys.
132
(
19
),
193103
(
2022
).
17.
C.
Shang
,
J.
Selvidge
,
E.
Hughes
,
J. C.
Norman
,
A. A.
Taylor
,
A. C.
Gossard
,
K.
Mukherjee
, and
J. E.
Bowers
, “
A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density
,”
Phys. Status Solidi A
218
(
3
),
2000402
(
2021
).
18.
Z.
Liu
,
D.
Wasserman
,
S. S.
Howard
,
A. J.
Hoffman
,
C. F.
Gmachl
,
X.
Wang
,
T.
Tanbun-Ek
,
L.
Cheng
, and
F.-S.
Choa
, “
Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth
,”
IEEE Photonics Technol. Lett.
18
(
12
),
1347
1349
(
2006
).
You do not currently have access to this content.