In general, the radio frequency (rf) electric field within a sheath points toward the metal electrode in low pressure, unmagnetized rf electropositive capacitively coupled plasma (CCP) glow discharges. This is due to the large ratio of electron to ion mobility and the formation of an ion sheath. In this work, we studied, using fully kinetic particle-in-cell simulations, a reversed electric field induced by the strong secondary electron emission during the phase of sheath collapse in a high-voltage rf-driven low pressure CCP glow discharge. We explored the transition behavior of the formation of field reversal as a function of driving voltage amplitude and found that field reversal starts to form at around 750 V, for a discharge with an electrode spacing of 4 cm at 10 mTorr argon pressure driven at 13.56 MHz. Accordingly, the energy distribution function of electrons incident on the electrode shows peaks from around 3 to 10 eV while varying the driving voltage from 150 to 2000 V, showing potentially beneficial effects in plasma material processing where relatively directional electrons are preferred to solely thermal diffusion electrons.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
John Wiley & Sons
,
New York
,
2005
).
2.
J. T.
Gudmundsson
, “
Physics and technology of magnetron sputtering discharges
,”
Plasma Sources Sci. Technol.
29
(
11
),
113001
(
2020
).
3.
S.
Wilczek
,
J.
Schulze
,
R. P.
Brinkmann
,
Z.
Donkó
,
J.
Trieschmann
, and
T.
Mussenbrock
, “
Electron dynamics in low pressure capacitively coupled radio frequency discharges
,”
J. Appl. Phys.
127
(
18
),
181101
(
2020
).
4.
L.
Lauro-Taroni
,
M. M.
Turner
, and
N. S.
Braithwaite
, “
Analysis of the excited argon atoms in the GEC RF reference cell by means of one-dimensional PIC simulations
,”
J. Phys. D: Appl. Phys.
37
(
16
),
2216
2222
(
2004
).
5.
L.
Wang
,
P.
Hartmann
,
Z.
Donkó
,
Y.-H.
Song
, and
J.
Schulze
, “
2D particle-in-cell simulations of charged particle dynamics in geometrically asymmetric low pressure capacitive RF plasmas
,”
Plasma Sources Sci. Technol.
30
(
8
),
085011
(
2021
).
6.
Z.
Donkó
,
A.
Derzsi
,
M.
Vass
,
B.
Horváth
,
S.
Wilczek
,
B.
Hartmann
, and
P.
Hartmann
, “
eduPIC: An introductory particle based code for radio-frequency plasma simulation
,”
Plasma Sources Sci. Technol.
30
(
9
),
095017
(
2021
).
7.
J. P.
Verboncoeur
, “
Particle simulation of plasmas: Review and advances
,”
Plasma Phys. Controlled Fusion
47
(
5A
),
A231
A260
(
2005
).
8.
L.
Wang
,
P.
Hartmann
,
Z.
Donkó
,
Y.-H.
Song
, and
J.
Schulze
, “
2D particle-in-cell simulations of geometrically asymmetric low-pressure capacitive RF plasmas driven by tailored voltage waveforms
,”
Plasma Sources Sci. Technol.
30
(
5
),
054001
(
2021
).
9.
Y.-X.
Liu
,
Q.-Z.
Zhang
,
W.
Jiang
,
L.-J.
Hou
,
X.-Z.
Jiang
,
W.-Q.
Lu
, and
Y.-N.
Wang
, “
Collisionless bounce resonance heating in dual-frequency capacitively coupled plasmas
,”
Phys. Rev. Lett.
107
(
5
),
055002
(
2011
).
10.
U.
Czarnetzki
,
D.
Luggenhölscher
, and
H. F.
Döbele
, “
Space and time resolved electric field measurements in helium and hydrogen RF-discharges
,”
Plasma Sources Sci. Technol.
8
(
2
),
230
(
1999
).
11.
J.
Schulze
,
Z.
Donkó
,
B. G.
Heil
,
D.
Luggenhölscher
,
T.
Mussenbrock
,
R. P.
Brinkmann
, and
U.
Czarnetzki
, “
Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures
,”
J. Phys. D: Appl. Phys.
41
(
10
),
105214
(
2008
).
12.
D.
Vender
and
R. W.
Boswell
, “
Electron–sheath interaction in capacitive radio-frequency plasmas
,”
J. Vac. Sci. Technol., A
10
(
4
),
1331
1338
(
1992
).
13.
M. M.
Turner
and
M. B.
Hopkins
, “
Anomalous sheath heating in a low pressure rf discharge in nitrogen
,”
Phys. Rev. Lett.
69
(
24
),
3511
3514
(
1992
).
14.
S.
Mohr
,
E.
Schüngel
,
J.
Schulze
, and
U.
Czarnetzki
, “
Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen
,”
J. Phys. D: Appl. Phys.
46
(
43
),
435201
(
2013
).
15.
A. H.
Sato
and
M. A.
Lieberman
, “
Electron-beam probe measurements of electric fields in rf discharges
,”
J. Appl. Phys.
68
(
12
),
6117
6124
(
1990
).
16.
L.
Wang
,
D.-Q.
Wen
,
P.
Hartmann
,
Z.
Donkó
,
A.
Derzsi
,
X.-F.
Wang
,
Y.-H.
Song
,
Y.-N.
Wang
, and
J.
Schulze
, “
Electron power absorption dynamics in magnetized capacitively coupled radio frequency oxygen discharges
,”
Plasma Sources Sci. Technol.
29
(
10
),
105004
(
2020
).
17.
M. J.
Kushner
, “
Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges
,”
J. Appl. Phys.
94
(
3
),
1436
1447
(
2003
).
18.
G. Y.
Yeom
,
J. A.
Thornton
, and
M. J.
Kushner
, “
Cylindrical magnetron discharges. II. The formation of dc bias in rf-driven discharge sources
,”
J. Appl. Phys.
65
(
10
),
3825
3832
(
1989
).
19.
S.
Sharma
,
I. D.
Kaganovich
,
A. V.
Khrabrov
,
P.
Kaw
, and
A.
Sen
, “
Spatial symmetry breaking in single-frequency CCP discharge with transverse magnetic field
,”
Phys. Plasmas
25
(
8
),
080704
(
2018
).
20.
M. D.
Campanell
,
A. V.
Khrabrov
, and
I. D.
Kaganovich
, “
Absence of Debye sheaths due to secondary electron emission
,”
Phys. Rev. Lett.
108
(
25
),
255001
(
2012
).
21.
M. D.
Campanell
, “
Negative plasma potential relative to electron-emitting surfaces
,”
Phys. Rev. E
88
(
3
),
033103
(
2013
).
22.
D.
Sydorenko
,
I.
Kaganovich
,
Y.
Raitses
, and
A.
Smolyakov
, “
Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission
,”
Phys. Rev. Lett.
103
(
14
),
145004
(
2009
).
23.
Z.
Zhang
,
B.
Wu
,
S.
Yang
,
Y.
Zhang
,
D.
Chen
,
M.
Fan
, and
W.
Jiang
, “
Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission
,”
Plasma Sources Sci. Technol.
27
(
6
),
06LT01
(
2018
).
24.
F.
Krüger
,
S.
Wilczek
,
T.
Mussenbrock
, and
J.
Schulze
, “
Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches
,”
Plasma Sources Sci. Technol.
28
(
7
),
075017
(
2019
).
25.
B.
Horváth
,
M.
Daksha
,
I.
Korolov
,
A.
Derzsi
, and
J.
Schulze
, “
The role of electron induced secondary electron emission from SiO2 surfaces in capacitively coupled radio frequency plasmas operated at low pressures
,”
Plasma Sources Sci. Technol.
26
(
12
),
124001
(
2017
).
26.
J. T.
Gudmundsson
and
M. A.
Lieberman
, “
Ar+ and Xe+ velocities near the presheath-sheath boundary in an Ar/Xe discharge
,”
Phys. Rev. Lett.
107
(
4
),
045002
(
2011
).
27.
D.-Q.
Wen
,
P.
Zhang
,
J.
Krek
,
Y.
Fu
, and
J. P.
Verboncoeur
, “
Observation of multilayer-structured discharge in plasma ionization breakdown
,”
Appl. Phys. Lett.
119
(
26
),
264102
(
2021
).
28.
D.-Q.
Wen
,
P.
Zhang
,
J.
Krek
,
Y.
Fu
, and
J. P.
Verboncoeur
, “
Higher harmonics in multipactor induced plasma ionization breakdown near a dielectric surface
,”
Phys. Rev. Lett.
129
(
4
),
045001
(
2022
).
29.
J. T.
Gudmundsson
,
E.
Kawamura
, and
M. A.
Lieberman
, “
A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code
,”
Plasma Sources Sci. Technol.
22
(
3
),
035011
(
2013
).
30.
A.
Proto
and
J. T.
Gudmundsson
, “
Electron power absorption in radio frequency driven capacitively coupled chlorine discharge
,”
Plasma Sources Sci. Technol.
30
(
6
),
065009
(
2021
).
31.
D. A.
Schulenberg
,
I.
Korolov
,
Z.
Donkó
,
A.
Derzsi
, and
J.
Schulze
, “
Multi-diagnostic experimental validation of 1d3v PIC/MCC simulations of low pressure capacitive RF plasmas operated in argon
,”
Plasma Sources Sci. Technol.
30
(
10
),
105003
(
2021
).
32.
D.-Q.
Wen
,
J.
Krek
,
J. T.
Gudmundsson
,
E.
Kawamura
,
M. A.
Lieberman
, and
J. P.
Verboncoeur
, “
Benchmarked and upgraded particle-in-cell simulations of capacitive argon discharge at intermediate pressure: The role of metastable atoms
,”
Plasma Sources Sci. Technol.
30
(
10
),
105009
(
2021
).
33.
J. T.
Gudmundsson
,
J.
Krek
,
D.-Q.
Wen
,
E.
Kawamura
, and
M. A.
Lieberman
, “
Surface effects in a capacitive argon discharge in the intermediate pressure regime
,”
Plasma Sources Sci. Technol.
30
(
12
),
125011
(
2021
).
34.
D.-Q.
Wen
,
J.
Krek
,
J. T.
Gudmundsson
,
E.
Kawamura
,
M. A.
Lieberman
, and
J. P.
Verboncoeur
, “
Particle-in-cell simulations with fluid metastable atoms in capacitive argon discharges: Electron elastic scattering and plasma density profile transition
,”
IEEE Trans. Plasma Sci.
50
(
9
),
2548
2557
(
2022
).
35.
D.-Q.
Wen
,
J.
Krek
,
J. T.
Gudmundsson
,
E.
Kawamura
,
M. A.
Lieberman
,
P.
Zhang
, and
J. P.
Verboncoeur
, “
On the importance of excited state species in low pressure capacitively coupled plasma argon discharges
,”
Plasma Sources Sci. Technol.
32
(
6
),
064001
(
2023
).
36.
I. M.
Stewart
, “
The reflection of metastable particles at a surface
,”
J. Phys. D: Appl. Phys.
27
(
7
),
1487
1491
(
1994
).
37.
S.
Schohl
,
H. A. J.
Meijer
,
M.-W.
Ruf
, and
H.
Hotop
, “
Measurement of yields for electron emission from surfaces upon impact of laser-excited Ar*(4p) and Kr* (5p) atoms
,”
Meas. Sci. Technol.
3
(
5
),
544
551
(
1992
).
38.
J. R. M.
Vaughan
, “
Secondary emission formulas
,”
IEEE Trans. Electron Devices
40
(
4
),
830
(
1993
).
39.
V.
Baglin
,
J.
Bojko
,
O.
Gröbner
,
B.
Henrist
,
N.
Hilleret
,
C.
Scheuerlein
, and
M.
Taborelli
, “
The secondary electron yield of technical materials and its variation with surface treatments
,” in
Proceedings of the 7th European Particle Accelerator Conference
, 26–30 June 2000, Vienna, Austria, http://www.jacow.org, pp.
217
221
.
40.
M. A.
Furman
and
M. T. F.
Pivi
, “
Probabilistic model for the simulation of secondary electron emission
,”
Phys. Rev. Spec. Top.–Accel. Beams
5
(
12
),
124404
(
2002
).
41.
R.
Kirby
and
F.
King
, “
Secondary electron emission yields from PEP-II accelerator materials
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
469
(
1
),
1
12
(
2001
).
42.
B.
Feuerbacher
and
B.
Fitton
, “
Experimental investigation of photoemission from satellite surface materials
,”
J. Appl. Phys.
43
(
4
),
1563
1572
(
1972
).
43.
A. V.
Phelps
and
Z. L.
Petrović
, “
Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons
,”
Plasma Sources Sci. Technol.
8
(
3
),
R21
R44
(
1999
).
44.
A. V.
Phelps
,
L. C.
Pitchford
,
C.
Pédoussat
, and
Z.
Donkó
, “
Use of secondary-electron yields determined from breakdown data in cathode-fall models for Ar
,”
Plasma Sources Sci. Technol.
8
(
4
),
B1
B2
(
1999
).
45.
J.
Schulze
,
Z.
Donkó
,
A.
Derzsi
,
I.
Korolov
, and
E.
Schuengel
, “
The effect of ambipolar electric fields on the electron heating in capacitive RF plasmas
,”
Plasma Sources Sci. Technol.
24
(
1
),
015019
(
2014
).
You do not currently have access to this content.