We study the effects of compressive and tensile biaxial strain on direct and phonon-assisted Auger–Meitner recombination (AMR) in silicon using first-principles calculations. We find that the application of strain has a non-trivial effect on the AMR rate. For most AMR processes, the application of strain increases the AMR rate. However, the recombination rate for the AMR process involving two holes and one electron is suppressed by 38% under tensile strain. We further analyze the specific phonon contributions that mediate the phonon-assisted AMR mechanism, demonstrating the increased anisotropy under strain. Our results indicate that the application of tensile strain increases the lifetime of minority electron carriers in p-type silicon and can be leveraged to improve the efficiency of silicon devices.

1.
D.
Matsakis
,
A.
Coster
,
B.
Laster
, and
R.
Sime
, “
A renaming proposal: “The Auger–Meitner effect
”,”
Phys. Today
72
(
9
),
10
11
(
2019
).
2.
M.
Green
, “
Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes
,”
IEEE Trans. Electron Devices
31
,
671
678
(
1984
).
3.
T.
Tiedje
,
E.
Yablonovitch
,
G.
Cody
, and
B.
Brooks
, “
Limiting efficiency of silicon solar cells
,”
IEEE Trans. Electron Devices
31
,
711
716
(
1984
).
4.
M. J.
Kerr
,
A.
Cuevas
, and
P.
Campbell
, “
Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination
,”
Prog. Photovoltaics
11
,
97
104
(
2003
).
5.
Q.
Su
,
H.
Lin
,
G.
Wang
,
H.
Tang
,
C.
Xue
,
Z.
Li
,
X.
Xu
, and
P.
Gao
, “
Limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications
,”
Authorea
(
2023
).
6.
M.
Shibib
,
F.
Lindholm
, and
J.
Fossum
, “
Auger recombination in heavily doped shallow-emitter silicon p-n-junction solar cells, diodes, and transistors
,”
IEEE Trans. Electron Devices
26
,
1104
1106
(
1979
).
7.
M.
Tyagi
and
R. V.
Overstraeten
, “
Minority carrier recombination in heavily-doped silicon
,”
Solid-State Electron.
26
,
577
597
(
1983
).
8.
M.
Leilaeioun
and
Z. C.
Holman
, “
Accuracy of expressions for the fill factor of a solar cell in terms of open-circuit voltage and ideality factor
,”
J. Appl. Phys.
120
,
123111
(
2016
).
9.
G.
Tsutsui
,
S.
Mochizuki
,
N.
Loubet
,
S. W.
Bedell
, and
D. K.
Sadana
, “
Strain engineering in functional materials
,”
AIP Adv.
9
,
030701
(
2019
).
10.
Z.
Dai
,
L.
Liu
, and
Z.
Zhang
, “
Strain engineering of 2D materials: Issues and opportunities at the interface
,”
Adv. Mater.
31
,
1805417
(
2019
).
11.
Y.
Miao
,
Y.
Zhao
,
S.
Zhang
,
R.
Shi
, and
T.
Zhang
, “
Strain engineering: A boosting strategy for photocatalysis
,”
Adv. Mater.
34
,
2200868
(
2022
).
12.
H.
Omi
,
D. J.
Bottomley
,
Y.
Homma
, and
T.
Ogino
, “
Wafer-scale strain engineering on silicon for fabrication of ultimately controlled nanostructures
,”
Phys. Rev. B
67
,
115302
(
2003
).
13.
M.
Ieong
,
B.
Doris
,
J.
Kedzierski
,
K.
Rim
, and
M.
Yang
, “
Silicon device scaling to the sub-10-nm regime
,”
Science
306
,
2057
2060
(
2004
).
14.
D. J.
Paul
, “
Si/SiGe heterostructures: From material and physics to devices and circuits
,”
Semicond. Sci. Technol.
19
,
R75
R108
(
2004
).
15.
P.
Chidambaram
,
C.
Bowen
,
S.
Chakravarthi
,
C.
Machala
, and
R.
Wise
, “
Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing
,”
IEEE Trans. Electron Devices
53
,
944
964
(
2006
).
16.
C.
Rödl
,
T.
Sander
,
F.
Bechstedt
,
J.
Vidal
,
P.
Olsson
,
S.
Laribi
, and
J.-F.
Guillemoles
, “
Wurtzite silicon as a potential absorber in photovoltaics: Tailoring the optical absorption by applying strain
,”
Phys. Rev. B
92
,
045207
(
2015
).
17.
S.
Meesala
,
Y.-I.
Sohn
,
B.
Pingault
,
L.
Shao
,
H. A.
Atikian
,
J.
Holzgrafe
,
M.
Gündoğan
,
C.
Stavrakas
,
A.
Sipahigil
,
C.
Chia
,
R.
Evans
,
M. J.
Burek
,
M.
Zhang
,
L.
Wu
,
J. L.
Pacheco
,
J.
Abraham
,
E.
Bielejec
,
M. D.
Lukin
,
M.
Atatüre
, and
M.
Lončar
, “
Strain engineering of the silicon-vacancy center in diamond
,”
Phys. Rev. B
97
,
205444
(
2018
).
18.
W.
Cai
,
J.
Wang
,
Y.
He
,
S.
Liu
,
Q.
Xiong
,
Z.
Liu
, and
Q.
Zhang
, “
Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction
,”
Nano-Micro Lett.
13
,
74
(
2021
).
19.
A. M.
Itsuno
,
J. D.
Phillips
, and
S.
Velicu
, “
Design of an auger-suppressed unipolar HgCdTe NBνN photodetector
,”
J. Elec. Mater.
41
,
2886
2892
(
2012
).
20.
W. K.
Bae
,
L. A.
Padilha
,
Y.-S.
Park
,
H.
McDaniel
,
I.
Robel
,
J. M.
Pietryga
, and
V. I.
Klimov
, “
Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination
,”
ACS Nano
7
,
3411
3419
(
2013
).
21.
J.
Piprek
, “
Analysis of efficiency limitations in high-power InGaN/GaN laser diodes
,”
Opt. Quant. Electron.
48
,
471
(
2016
).
22.
R.
Singh
,
W.
Liu
,
J.
Lim
,
I.
Robel
, and
V. I.
Klimov
, “
Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions
,”
Nat. Nanotechnol.
14
,
1035
1041
(
2019
).
23.
C.
Livache
,
W. D.
Kim
,
H.
Jin
,
O. V.
Kozlov
,
I.
Fedin
, and
V. I.
Klimov
, “
High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization
,”
Nat. Photonics
16
,
433
440
(
2022
).
24.
S.
Du
,
J.
Yin
,
H.
Xie
,
Y.
Sun
,
T.
Fang
,
Y.
Wang
,
J.
Li
,
D.
Xiao
,
X.
Yang
,
S.
Zhang
,
D.
Wang
,
W.
Chen
,
W.-Y.
Yin
, and
R.
Zheng
, “
Auger scattering dynamic of photo-excited hot carriers in nano-graphite film
,”
Appl. Phys. Lett.
121
,
181104
(
2022
).
25.
W. W.
Lui
,
T.
Yamanaka
,
Y.
Yoshikuni
,
S.
Seki
, and
K.
Yokoyama
, “
Optimum strain for the suppression of Auger recombination effects in compressively strained InGaAs/InGaAsP quantum well lasers
,”
Appl. Phys. Lett.
64
,
1475
1477
(
1994
).
26.
K.
Bushick
and
E.
Kioupakis
, “
Phonon-assisted Auger–Meitner recombination in silicon from first principles
,”
Phys. Rev. Lett.
131
,
076902
(
2023
).
27.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S. D.
Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
28.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A. O.
de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
29.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
de Gironcoli
,
P.
Delugas
,
F. F.
Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
30.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
31.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
32.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
2006
(
1991
).
33.
G.
Bona
and
F.
Meier
, “
Observation of the spin-orbit splitting at the valence band edge of silicon by spin-polarized photoemission
,”
Solid State Commun.
55
,
851
855
(
1985
).
34.
S.
Poncé
,
F.
Macheda
,
E. R.
Margine
,
N.
Marzari
,
N.
Bonini
, and
F.
Giustino
, “
First-principles predictions of Hall and drift mobilities in semiconductors
,”
Phys. Rev. Res.
3
,
043022
(
2021
).
35.
M.
Zacharias
,
M.
Scheffler
, and
C.
Carbogno
, “
Fully anharmonic nonperturbative theory of vibronically renormalized electronic band structures
,”
Phys. Rev. B
102
,
045126
(
2020
).
36.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
37.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
,
165902
(
2020
).
38.
W.
Bludau
,
A.
Onton
, and
W.
Heinke
, “
Temperature dependence of the band gap of silicon
,”
J. Appl. Phys.
45
,
1846
1848
(
1974
).
39.
J.
Munguía
,
G.
Bremond
,
J. M.
Bluet
,
J. M.
Hartmann
, and
M.
Mermoux
, “
Strain dependence of indirect band gap for strained silicon on insulator wafers
,”
Appl. Phys. Lett.
93
,
102101
(
2008
).
40.
A.
Richter
,
S. W.
Glunz
,
F.
Werner
,
J.
Schmidt
, and
A.
Cuevas
, “
Improved quantitative description of Auger recombination in crystalline silicon
,”
Phys. Rev. B
86
,
165202
(
2012
).
41.
E.
Kioupakis
,
D.
Steiauf
,
P.
Rinke
,
K. T.
Delaney
, and
C. G. V. D.
Walle
, “
First-principles calculations of indirect Auger recombination in nitride semiconductors
,”
Phys. Rev. B
92
,
035207
(
2015
).
42.
J.
Dziewior
and
W.
Schmid
, “
Auger coefficients for highly doped and highly excited silicon
,”
Appl. Phys. Lett.
31
,
346
348
(
1977
).
43.
R.
Häcker
and
A.
Hangleiter
, “
Intrinsic upper limits of the carrier lifetime in silicon
,”
J. Appl. Phys.
75
,
7570
7572
(
1994
).
44.
M.
Govoni
,
I.
Marri
, and
S.
Ossicini
, “
Auger recombination in Si and GaAs semiconductors: Ab initio results
,”
Phys. Rev. B
84
,
075215
(
2011
).
45.
S.
Dominici
,
H.
Wen
,
F.
Bertazzi
,
M.
Goano
, and
E.
Bellotti
, “
Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium
,”
Appl. Phys. Lett.
108
,
211103
(
2016
).
46.
S.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons, Inc.
,
2006
).
47.
D.
Yu
,
Y.
Zhang
, and
F.
Liu
, “
First-principles study of electronic properties of biaxially strained silicon: Effects on charge carrier mobility
,”
Phys. Rev. B
78
,
245204
(
2008
).

Supplementary Material

You do not currently have access to this content.