With their shielded 4f orbitals, rare-earth ions (REIs) offer optical and electron spin transitions with good coherence properties even when embedded in a host crystal matrix, highlighting their utility as promising quantum emitters and memories for quantum information processing. Among REIs, trivalent erbium (Er3+) uniquely has an optical transition in the telecom C-band, ideal for transmission over optical fibers, making it well suited for applications in quantum communication. The deployment of Er3+ emitters into a thin film TiO2 platform has been a promising step toward scalable integration; however, like many solid-state systems, the deterministic spatial placement of quantum emitters remains an open challenge. We investigate laser annealing as a means to locally tune the optical resonance of Er3+ emitters in TiO2 thin films on Si. Using both nanoscale x-ray diffraction measurements and cryogenic photoluminescence spectroscopy, we show that tightly focused below-gap laser annealing can induce anatase to rutile phase transitions in a nearly diffraction-limited area of the films and improve local crystallinity through grain growth. As a percentage of Er:TiO2 is converted to rutile, the Er3+ optical transition blueshifts by 13 nm. We explore the effects of changing laser annealing time and show that the amount of optically active Er:rutile increases linearly with laser power. We additionally demonstrate local phase conversion on microfabricated Si structures, which holds significance for quantum photonics.

1.
G.
Wolfowicz
,
F. J.
Heremans
,
C. P.
Anderson
,
S.
Kanai
,
H.
Seo
,
A.
Gali
,
G.
Galli
, and
D. D.
Awschalom
, “
Quantum guidelines for solid-state spin defects
,”
Nat. Rev. Mater.
6
(
10
),
906
925
(
2021
).
2.
T.
Boettger
,
Y.
Sun
,
C. W.
Thiel
, and
R. L.
Cone
, “
Material optimization of Er3+:Y2SiO5 at 1.5 μm for optical processing, memory, and laser frequency stabilization applications
,”
Proc. SPIE
4988
,
51
61
(
2003
).
3.
M.
Rančić
,
M. P.
Hedges
,
R. L.
Ahlefeldt
, and
M. J.
Sellars
, “
Coherence time of over a second in a telecom-compatible quantum memory storage material
,”
Nat. Phys.
14
(
1
),
50
54
(
2018
).
4.
M.
Le Dantec
,
M.
Rani
,
S.
Lin
,
E.
Billaud
,
V.
Ranjan
,
D.
Flanigan
,
S.
Bertaina
,
T.
Chanelire
,
P.
Goldner
,
A.
Erb
,
R. B.
Liu
,
D.
Estve
,
D.
Vion
,
E.
Flurin
, and
P.
Bertet
, “
Twenty-three–millisecond electron spin coherence of erbium ions in a natural-abundance crystal
,”
Sci. Adv.
7
,
eabj9786
(
2021
).
5.
S.
Gupta
,
X.
Wu
,
H.
Zhang
,
J.
Yang
, and
T.
Zhong
, “
Robust millisecond coherence times of erbium electron spins
,”
Phys. Rev. Appl.
19
,
044029
(
2023
).
6.
R. M.
Pettit
,
F. H.
Farshi
,
S. E.
Sullivan
,
A.
Véliz-Osorio
, and
M. K.
Singh
, “
A perspective on the pathway to a scalable quantum internet using rare-earth ions
,” arXiv:2304.07272 (
2023
).
7.
A.
Dibos
,
M.
Raha
,
C.
Phenicie
, and
J.
Thompson
, “
Atomic source of single photons in the telecom band
,”
Phys. Rev. Lett.
120
,
243601
(
2018
).
8.
S.
Ourari
,
Ł.
Dusanowski
,
S. P.
Horvath
,
M. T.
Uysal
,
C. M.
Phenicie
,
P.
Stevenson
,
M.
Raha
,
S.
Chen
,
R. J.
Cava
,
N. P.
de Leon
, and
J. D.
Thompson
, “
Indistinguishable telecom band photons from a single Er ion in the solid state
,”
Nature
620
(
7976
),
977
981
(
2023
).
9.
M.
Raha
,
S.
Chen
,
C. M.
Phenicie
,
S.
Ourari
,
A. M.
Dibos
, and
J. D.
Thompson
, “
Optical quantum nondemolition measurement of a single rare earth ion qubit
,”
Nat. Commun.
11
(
1
),
1605
(
2020
).
10.
S.
Chen
,
M.
Raha
,
C. M.
Phenicie
,
S.
Ourari
, and
J. D.
Thompson
, “
Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit
,”
Science
370
,
592
595
(
2020
).
11.
A.
Ortu
,
A.
Tiranov
,
S.
Welinski
,
F.
Fröwis
,
N.
Gisin
,
A.
Ferrier
,
P.
Goldner
, and
M.
Afzelius
, “
Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins
,”
Nat. Mater.
17
(
8
),
671
675
(
2018
).
12.
P.
Stevenson
,
C. M.
Phenicie
,
I.
Gray
,
S. P.
Horvath
,
S.
Welinski
,
A. M.
Ferrenti
,
A.
Ferrier
,
P.
Goldner
,
S.
Das
,
R.
Ramesh
,
R. J.
Cava
,
N. P.
de Leon
, and
J. D.
Thompson
, “
Erbium-implanted materials for quantum communication applications
,”
Phys. Rev. B
105
,
224106
(
2022
).
13.
A. M.
Ferrenti
,
N. P.
de Leon
,
J. D.
Thompson
, and
R. J.
Cava
, “
Identifying candidate hosts for quantum defects via data mining
,”
npj Comput. Mater.
6
(
1
),
1
6
(
2020
).
14.
S.
Kanai
,
F. J.
Heremans
,
H.
Seo
,
G.
Wolfowicz
,
C. P.
Anderson
,
S. E.
Sullivan
,
M.
Onizhuk
,
G.
Galli
,
D. D.
Awschalom
, and
H.
Ohno
, “
Generalized scaling of spin qubit coherence in over 12,000 host materials
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2121808119
(
2022
).
15.
C. M.
Phenicie
,
P.
Stevenson
,
S.
Welinski
,
B. C.
Rose
,
A. T.
Asfaw
,
R. J.
Cava
,
S. A.
Lyon
,
N. P.
de Leon
, and
J. D.
Thompson
, “
Narrow optical line widths in erbium implanted in TiO2
,”
Nano Lett.
19
,
8928
8933
(
2019
).
16.
S. S.
Djordjevic
,
K.
Shang
,
B.
Guan
,
S. T. S.
Cheung
,
L.
Liao
,
J.
Basak
,
H.-F.
Liu
, and
S. J. B.
Yoo
, “
CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide
,”
Opt. Express
21
,
13958
13968
(
2013
).
17.
M. K.
Singh
,
G.
Wolfowicz
,
J.
Wen
,
S. E.
Sullivan
,
A.
Prakash
,
A. M.
Dibos
,
D. D.
Awschalom
,
F. J.
Heremans
, and
S.
Guha
, “
Development of a scalable quantum memory platform–Materials science of erbium-doped TiO2 thin films on silicon
,” arXiv:2202.05376 (
2022
).
18.
A. M.
Dibos
,
M. T.
Solomon
,
S. E.
Sullivan
,
M. K.
Singh
,
K. E.
Sautter
,
C. P.
Horn
,
G. D.
Grant
,
Y.
Lin
,
J.
Wen
,
F. J.
Heremans
,
S.
Guha
, and
D. D.
Awschalom
, “
Purcell enhancement of erbium ions in TiO2 on silicon nanocavities
,”
Nano Lett.
22
,
6530
6536
(
2022
).
19.
K.
Shin
,
I.
Gray
,
G.
Marcaud
,
S. P.
Horvath
,
F. J.
Walker
,
J. D.
Thompson
, and
C. H.
Ahn
, “
Er-doped anatase TiO2 thin films on LaAlO3 (001) for quantum interconnects (QuICs)
,”
Appl. Phys. Lett.
121
,
081902
(
2022
).
20.
C.
Ji
,
M. T.
Solomon
,
G. D.
Grant
,
K.
Tanaka
,
M.
Hua
,
J.
Wen
,
S. K.
Seth
,
C. P.
Horn
,
I.
Masiulionis
,
M. K.
Singh
et al, “
Nanocavity-mediated Purcell enhancement of Er in TiO2 thin films grown via atomic layer deposition
,” arXiv:2309.13490 (
2023
).
21.
M. T.
Solomon
,
M.
Koppenhöfer
,
C.
Ji
,
G.
Grant
,
I.
Masiulionis
,
S. E.
Sullivan
,
F. J.
Heremans
,
S.
Guha
,
D. D.
Awschalom
,
A. A.
Clerk
et al, “
Anomalous Purcell decay of strongly driven inhomogeneous emitters coupled to a cavity
,” arXiv:2309.16641 (
2023
).
22.
S.
Mondal
,
A.
Ghosh
,
M. R.
Piton
,
J. P.
Gomes
,
J. F.
Felix
,
Y. G.
Gobato
,
H. V. A.
Galeti
,
B.
Choudhuri
,
S. M. M.
Dhar Dwivedi
,
M.
Henini
, and
A.
Mondal
, “
Investigation of optical and electrical properties of erbium-doped TiO2 thin films for photodetector applications
,”
J. Mater. Sci.: Mater. Electron.
29
,
19588
19600
(
2018
).
23.
Z.
Rao
,
X.
Xie
,
X.
Wang
,
A.
Mahmood
,
S.
Tong
,
M.
Ge
, and
J.
Sun
, “
Defect chemistry of Er3+-doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs
,”
J. Phys. Chem. C
123
,
12321
12334
(
2019
).
24.
A.
Kot
,
M.
Radecka
, and
K.
Zakrzewska
, “
Influence of Er and Yb on photoelectrochemical performance of TiO2 thin film
,”
Appl. Surf. Sci.
608
,
155127
(
2023
).
25.
S. R.
Johannsen
,
S.
Roesgaard
,
B.
Julsgaard
,
R. A. S.
Ferreira
,
J.
Chevallier
,
P.
Balling
,
S. K.
Ram
, and
A. N.
Larsen
, “
Influence of TiO2 host crystallinity on Er3+ light emission
,”
Opt. Mater. Express
6
,
1664
1678
(
2016
).
26.
G. C.
Vásquez
,
M. A.
Peche-Herrero
,
D.
Maestre
,
A.
Gianoncelli
,
J.
Ramírez-Castellanos
,
A.
Cremades
,
J. M.
Gonzílez-Calbet
, and
J.
Piqueras
, “
Laser-induced anatase-to-rutile transition in TiO2 nanoparticles: Promotion and inhibition effects by Fe and Al doping and achievement of micropatterning
,”
J. Phys. Chem. C
119
,
11965
11974
(
2015
).
27.
J. A.
Benavides
,
C. P.
Trudeau
,
L. F.
Gerlein
, and
S. G.
Cloutier
, “
Laser selective photoactivation of amorphous TiO2 films to anatase and/or rutile crystalline phases
,”
ACS Appl. Energy Mater.
1
,
3607
3613
(
2018
).
28.
S. E.
Ahmed
,
V. M.
Poole
,
J.
Igo
,
Y.
Gu
, and
M. D.
McCluskey
, “
Localized phase transition of TiO2 thin films induced by sub-bandgap laser irradiation
,”
J. Vac. Sci. Technol. A
39
,
053402
(
2021
).
29.
M.
Abbasi
,
Y.
Dong
,
J.
Meng
,
D.
Morgan
,
X.
Wang
, and
J.
Hwang
, “
In situ observation of medium range ordering and crystallization of amorphous TiO2 ultrathin films grown by atomic layer deposition
,”
APL Mater.
11
,
011102
(
2023
).
30.
Y.-C.
Chen
,
B.
Griffiths
,
L.
Weng
,
S. S.
Nicley
,
S. N.
Ishmael
,
Y.
Lekhai
,
S.
Johnson
,
C. J.
Stephen
,
B. L.
Green
,
G. W.
Morley
,
M. E.
Newton
,
M. J.
Booth
,
P. S.
Salter
, and
J. M.
Smith
, “
Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield
,”
Optica
6
,
662
(
2019
).
31.
Y.-C.
Chen
,
P. S.
Salter
,
M.
Niethammer
,
M.
Widmann
,
F.
Kaiser
,
R.
Nagy
,
N.
Morioka
,
C.
Babin
,
J.
Erlekampf
,
P.
Berwian
,
M. J.
Booth
, and
J.
Wrachtrup
, “
Laser writing of scalable single color centers in silicon carbide
,”
Nano Lett.
19
,
2377
2383
(
2019
).

Supplementary Material

You do not currently have access to this content.