Superconducting nanowire single photon detectors (SNSPDs) made with thin NbN films can reach high performances. While sputtering has been the deposition method of choice, here, we show that ammonia-molecular beam epitaxy (NH3-MBE) can produce pertinent epitaxial cubic NbN thin films on silicon substrates using an AlN buffer. Despite granular morphology and a high density of grain boundaries as well as the presence of rotational twins, Tc = 12.7 K for a 5.6 nm thick film and saturation of internal detection efficiency up to 850 nm are achieved. Morphology and stoichiometry as well as strain have a strong impact on the detector properties, highlighting the importance of a precise control of the growth parameters. These results pave the way for high fabrication yield of SNSPDs on large-scale silicon wafers using epitaxial NbN thin films grown by MBE.

1.
G.
Gol'Tsman
,
O.
Okunev
,
G.
Chulkova
,
A.
Lipatov
,
A.
Semenov
,
B. V. K.
Smirnov
,
A.
Dzardanov
,
C.
Williams
, and
R.
Sobolewski
, “
Picosecond superconducting single-photon optical detector
,”
Appl. Phys. Lett.
79
,
705
(
2001
).
2.
R. H.
Hadfield
, “
Single-photon detectors for optical quantum information applications
,”
Nat. Photonics
3
,
696
705
(
2009
).
3.
S.
Slussarenko
and
G. J.
Pryde
, “
Photonic quantum information processing: A concise review
,”
Appl. Phys. Rev.
6
,
041303
(
2019
).
4.
J.
Chang
,
J. W. N.
Los
,
J. O.
Tenorio-Pearl
,
N.
Noordzij
,
R.
Gourgues
,
A.
Guardiani
,
J. R.
Zichi
,
S. F.
Pereira
,
H. P.
Urbach
,
V.
Zwiller
,
S. N.
Dorenbos
, and
I. E.
Zadeh
, “
Detecting telecom single photons with 99.5 2.07 + 0.5 efficiency and high time resolution
,”
APL Photonics
6
,
036114
(
2021
).
5.
V. B.
Verma
,
A. E.
Lita
,
B.
Korzh
,
E.
Wollman
,
M. D.
Shaw
,
R. P.
Mirin
, and
S. W.
Nam
, “
Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors
,”
Proc. SPIE
10978
,
109780N
(
2019
).
6.
F.
Marsili
,
F.
Bellei
,
F.
Najafi
,
A. E.
Dane
,
E. A.
Dauler
,
R. J.
Molnar
, and
K. K.
Berggren
, “
Efficient single photon detection from 500 nm to 5 μm wavelength
,”
Nano Lett.
12
,
4799
(
2012
).
7.
V. B.
Verma
,
B.
Korzh
,
A. B.
Walter
,
A. E.
Lita
,
R. M.
Briggs
,
M.
Colangelo
,
Y.
Zhai
,
E. E.
Wollman
,
A. D.
Beyer
,
J. P.
Allmaras
,
H.
Vora
,
D.
Zhu
,
E.
Schmidt
,
A. G.
Kozorezov
,
K. K.
Berggren
,
R. P.
Mirin
,
S. W.
Nam
, and
M. D.
Shaw
, “
Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors featured
,”
APL Photonics
6
,
056101
(
2021
).
8.
F.
Marsili
,
V. B.
Verma
,
J. A.
Stern
,
S.
Harrington
,
A. E. L. T.
Gerrits
,
I.
Vayshenker
,
B.
Baek
,
M. D.
Shaw
,
R. P.
Mirin
, and
S. W.
Nam
, “
Detecting single infrared photons with 93% system efficiency
,”
Nat. Photonics
7
,
210
214
(
2013
).
9.
F.
Marsili
,
F.
Najafia
,
E.
Dauler
,
F.
Bellei
,
X.
Hu
,
M.
Csete
,
R. J.
Molnar
, and
K. K.
Berggren
, “
Single-photon detectors based on ultranarrow superconducting nanowires
,”
Nano Lett.
11
,
2048
(
2011
).
10.
C.
Schuck
,
W. H. P.
Pernice
, and
H. X.
Tang
, “
Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate
,”
Sci. Rep.
3
,
1893
(
2013
).
11.
H.
Shibata
,
K.
Shimizu
, and
H. T. Y.
Tokura
, “
Ultimate low system dark-count rate for superconducting nanowire single-photon detector
,”
Opt. Lett.
40
,
3428
(
2015
).
12.
K.
Smirnov
,
A.
Divochiy
,
Y.
Vakhtomin
,
P.
Morozov
,
P.
Zolotov
,
A.
Antipov
, and
V.
Seleznev
, “
NbN single-photon detectors with saturated dependence of quantum efficiency
,”
Supercond. Sci. Technol.
31
,
035011
(
2018
).
13.
P.
Zolotov
,
S.
Svyatodukh
,
A.
Divochiy
,
V.
Seleznev
, and
G.
Goltsman
, “
High-resistivity niobium nitride films for saturated-efficiency SMSPDs at telecom wavelengths and beyond
,”
Appl. Phys. Lett.
122
,
152602
(
2023
).
14.
S.
Steinhauer
,
L.
Yang
,
S.
Gyger
,
T.
Lettner
,
C.
Errando-Herranz
,
K. D.
Jöns
,
M. A. B. K.
Gallo
,
J.
Zichi
, and
V.
Zwiller
, “
NbTiN thin films for superconducting photon detectors on photonic and two-dimensional materials
,”
Appl. Phys. Lett.
116
,
171101
(
2020
).
15.
B.
Baek
,
A. E.
Lita
,
V.
Verma
, and
S. W.
Nam
, “
Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm
,”
Appl. Phys. Lett.
98
,
251105
(
2011
).
16.
Y. P.
Korneeva
,
M. Y.
Mikhailov
,
Y. P.
Pershin
,
N.
Manova
,
A.
Divochiy
,
Y. B.
Vakhtomin
,
A.
Korneev
,
K.
Smirnov
,
A.
Sivakov
,
A. Y.
Devizenko
, and
G. N.
Goltsman
, “
Superconducting single-photon detector made of MoSi film
,”
Supercond. Sci. Technol.
27
,
095012
(
2014
).
17.
I.
Charaev
,
D. A.
Bandurin
,
A. T.
Bollinger
,
I. Y.
Phinney
,
I.
Drozdov
,
M.
Colangelo
,
B. A.
Butters
,
T.
Taniguchi
,
K.
Watanabe
,
O. M. X.
He
,
I.
Božović
,
P.
Jarillo-Herrero
, and
K. K.
Berggren
, “
Single-photon detection using high-temperature superconductors
,”
Nat. Nanotechnol.
18
,
343
349
(
2023
).
18.
A.
Lipatov
,
O.
Okunev
,
K.
Smirnov
,
G.
Chulkova
,
A.
Korneev
,
P.
Kouminov
,
G.
Gol'tsman
,
J.
Zhang
,
W.
Slysz
,
A.
Verevkin
, and
R.
Sobolewski
, “
An ultrafast NbN hot-electron single-photon detector for electronic applications
,”
Nano Lett.
15
,
1689
(
2002
).
19.
M.
Hofherr
,
D.
Rall
,
K.
Ilin
,
M.
Siegel
,
A.
Semenov
,
H.-W.
Hübers
, and
N. A.
Gippius
, “
Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses
,”
J. Appl. Phys.
108
,
014507
(
2010
).
20.
F.
Najafi
,
F.
Marsili
,
E.
Dauler
,
R. J.
Molnar
, and
K. K.
Berggren
, “
Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors
,”
Appl. Phys. Lett.
100
,
152602
(
2012
).
21.
Y.
Korneeva
,
D.
Vodolazov
,
A.
Semenov
,
I.
Florya
,
N.
Simonov
,
A. K. E.
Baeva
,
G.
Goltsman
, and
T. M.
Klapwijk
, “
Optical single-photon detection in micrometer-scale NbN bridges
,”
Phys. Rev. Appl.
9
,
064037
(
2018
).
22.
M.
Yabuno
,
F.
China
,
S.
Miki
, and
H.
Terai
, “
Large-area niobium titanium nitride superconducting microstrip single-photon detector fabricated using a photolithography process
,”
IEEE Trans. Appl. Supercond.
33
,
2200104
(
2023
).
23.
L.
Redaelli
,
G.
Bulgarini
,
S.
Dobrovolskiy
,
S.
Dorenbos
,
V.
Zwiller
,
E.
Monroy
, and
J. M.
Gérard
, “
Design of broadband high-efficiency superconducting-nanowire single photon detectors
,”
Supercond. Sci. Technol.
29
,
065016
(
2016
).
24.
D.
Henrich
,
P.
Reichensperger
,
M.
Hofherr
,
J. M.
Meckbach
,
K.
Il'in
,
M.
Siegel
,
A. Z. A.
Semenov
, and
D. Y.
Vodolazov
, “
Geometry-induced reduction of the critical current in superconducting nanowires
,”
Phys. Rev. B
86
,
144504
(
2012
).
25.
H. L.
Hortensius
,
E. F. C.
Driessen
,
T. M.
Klapwijk
,
K. K.
Berggren
, and
J. R.
Clem
, “
Critical-current reduction in thin superconducting wires due to current crowding
,”
Appl. Phys. Lett.
100
,
182602
(
2012
).
26.
M.
Jönsson
,
R.
Vedin
,
S.
Gyger
,
J. A.
Sutton
,
S.
Steinhauer
,
V.
Zwiller
,
M.
Wallin
, and
J.
Lidmar
, “
Current crowding in nanoscale superconductors within the Ginzburg-Landau model
,”
Phys. Rev. Appl.
17
,
064046
(
2022
).
27.
R.
Rhazi
,
H.
Machhadani
,
C.
Bougerol
,
S.
Lequien
,
E.
Robin
,
G.
Rodriguez
,
R.
Souil
,
J.-L.
Thomassin
,
N.
Mollard
,
Y.
Désières
,
E.
Monroy
,
S.
Olivier
, and
J.-M.
Gérard
, “
Improvement of critical temperature of niobium nitride deposited on 8-inch silicon wafers thanks to an AlN buffer layer
,”
Supercond. Sci. Technol.
34
,
045002
(
2021
).
28.
R.
Cheng
,
J.
Wright
,
H. G.
Xing
,
D.
Jena
, and
H. X.
Tang
, “
Epitaxial niobium nitride superconducting nanowire single-photon detectors
,”
Appl. Phys. Lett.
117
,
132601
(
2020
).
29.
J. J.
Renema
,
R.
Gaudio
,
Q.
Wang
,
Z.
Zhou
,
A.
Gaggero
,
F.
Mattioli
,
R.
Leoni
,
D.
Sahin
,
M. J. A.
de Dood
,
A.
Fiore
, and
M. P.
van Exter
, “
Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector
,”
Phys. Rev. Lett.
112
,
117604
(
2014
).
30.
A.
Engel
and
A.
Schilling
, “
Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector
,”
J. Appl. Phys.
114
,
214501
(
2013
).
31.
L. N.
Bulaevskii
,
M. J.
Graf
, and
V. G.
Kogan
, “
Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors
,”
Phys. Rev. B
85
,
014505
(
2012
).
32.
A.
Engel
,
J. J.
Renema
,
K.
Il'in
, and
A.
Semenov
, “
Detection mechanism of superconducting nanowire single-photon detectors
,”
Supercond. Sci. Technol.
28
,
114003
(
2015
).
33.
J. J.
Renema
,
Q.
Wang
,
R.
Gaudio
,
I.
Komen
,
K.
op't Hoog
,
D.
Sahin
,
A.
Schilling
,
M. P.
van Exter
,
A.
Fiore
,
A.
Engel
, and
M. J. A.
de Dood
, “
Position-dependent local detection efficiency in a nanowire superconducting single-photon detector
,”
Nano Lett.
15
,
4541
4545
(
2015
).
34.
D. Y.
Vodolazov
,
Y. P.
Korneeva
,
A. V.
Semenov
,
A. A.
Korneev
, and
G. N.
Goltsman
, “
Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field
,”
Phys. Rev. B
92
,
104503
(
2015
).
35.
R.
Cheng
,
S.
Wang
, and
H. X.
Tang
, “
Superconducting nanowire single-photon detectors fabricated from atomic-layer-deposited NbN
,”
Appl. Phys. Lett.
115
,
241101
(
2019
).
36.
D.
Hazra
,
N.
Tsavdaris
, and
M.
Mofheinz
et al, “
Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition
,”
Supercond. Sci. Technol.
29
,
105011
(
2016
).
37.
D.
Sam-Giao
,
S.
Pouget
,
C.
Bougerol
,
E.
Monroy
,
A.
Grimm
,
S.
Jebari
,
M.
Hofheinz
,
J. M.
Gérard
, and
V.
Zwiller
, “
High-quality NbN nanofilms on a GaN/AlN heterostructure
,”
AIP Adv.
4
,
107123
(
2014
).
38.
H.
Machhadani
,
J.
Zichi
,
C.
Bougerol
,
S.
Lequien
,
J.-L.
Thomassin
,
A.
Mukhtorava
,
V.
Zwiller
,
J.
Gérard
, and
E.
Monroy
, “
Improvement of the critical temperature of NbTiN films on III-nitride substrates
,”
Supercond. Sci. Technol.
32
,
035008
(
2019
).
39.
F.
Semond
, “
Epitaxial challenges of GaN on silicon
,”
MRS Bull.
40
,
412
(
2015
).
40.
A.
Kobayashi
,
S.
Kihira
,
T.
Takeda
,
M.
Kobayashi
,
T.
Harada
,
K.
Ueno
, and
H.
Fujioka
, “
Crystal-phase controlled epitaxial growth of NbNx superconductors on wide-bandgap AlN semiconductors
,”
Adv. Mater. Interfaces
9
,
2201244
(
2022
).
41.
A.
Kobayashi
,
K.
Ueno
, and
H.
Fujioka
, “
Coherent epitaxial growth of superconducting NbN ultrathin films on AlN by sputtering
,”
Appl. Phys. Express
13
,
061006
(
2020
).
42.
M.
Grundmann
, “
Formation of epitaxial domains: Unified theory of survey of experimental results
,”
Phys. Status Solidi B
248
,
805
824
(
2011
).
43.
Z.
Wang
,
A.
Kawakami
,
Y.
Uzawa
, and
B.
Komiyama
, “
Superconducting properties and crystal structures of singlecrystal niobium nitride thin films deposited at ambient substrate temperature
,”
J. Appl. Phys.
79
,
7837
7842
(
1996
).
44.
I.
Holzman
and
Y.
Ivry
, “
Superconducting nanowires for single-photon detection: Progress, challenges, and opportunities
,”
Adv. Quantum Technol.
116
,
1800058
(
2019
).
45.
M.
Colangelo
,
B.
Korzh
,
J.
Allmaras
,
A.
Beyer
,
A.
Mueller
,
R.
Briggs
,
B.
Bumble
,
M.
Runyan
,
M.
Stevens
,
A.
McCaughan
,
D.
Zhu
,
S.
Smith
,
W.
Becker
,
L.
Narvaez
,
J.
Bienfang
,
S.
Frasca
,
A.
Velasco
,
C.
Pena
,
E.
Ramirez
,
A.
Walter
,
E.
Schmidt
,
E.
Wollman
,
M.
Spiropulu
,
R.
Mirin
,
S. W.
NaM
,
K.
Berggren
, and
M.
Shaw
, “
Impedance-matched differential superconducting nanowire detectors
,”
Phys. Rev. Appl.
19
,
044093
(
2023
).
46.
C.
Carbillet
,
S.
Caprara
,
M.
Grilli
,
C.
Brun
,
T.
Cren
,
F.
Debontridder
,
B.
Vignolle
,
W.
Tabis
,
D.
Demaille
,
L.
Largeau
,
K.
Ilin
,
M.
Siegel
,
D.
Roditchev
, and
B.
Leridon
, “
Confinement of superconducting fluctuations due to emergent electronic inhomogeneities
,”
Phys. Rev. B
93
,
144509
(
2016
).
47.
W.
Nix
and
B.
Clemens
, “
Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films
,”
J. Mater. Res.
14
,
3467
3473
(
1999
).

Supplementary Material

You do not currently have access to this content.