Critical point parabolic band (CPPB) oscillators are often useful to model the optical response of semiconductor materials, such as hybrid organic–inorganic lead halide-based perovskites, to incident photons in the form of the complex dielectric function ( ε = ε 1 + i ε 2 ) spectra. Some models of ε using CPPB oscillators are not guaranteed Kramers–Kronig (KK) consistent (and therefore not physically realistic), may have excess or arbitrary parameter values, or may require prohibitively long computational time when used to fit ellipsometric spectra. For excitonic CPPBs, commonly used to describe the optical response of hybrid organic–inorganic lead halide-based perovskite materials, a physically realistic, parametric model of ε is developed from the KK relationship between ε 1 and ε 2 for a number of CPPB oscillators with an Urbach tail below the lowest direct transition. This parametric model is shown to produce the same line shape reported from previous works accurately and more quickly than other available KK-consistent CPPB models.

1.
C.
Li
,
X.
Wang
,
E.
Bi
,
F.
Jiang
,
S. M.
Park
,
Y.
Li
,
L.
Chen
,
Z.
Wang
,
L.
Zeng
,
H.
Chen
,
Y.
Liu
,
C. R.
Grice
,
A.
Abudulimu
,
J.
Chung
,
Y.
Xian
,
T.
Zhu
,
H.
Lai
,
B.
Chen
,
R. J.
Ellingson
,
F.
Fu
,
D. S.
Ginger
,
Z.
Song
,
E. H.
Sargent
, and
Y.
Yan
, “
Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells
,”
Science
379
,
690
(
2023
).
2.
R. A.
Awni
,
Z.
Song
,
C.
Chen
,
C.
Li
,
C.
Wang
,
M. A.
Razooqi
,
L.
Chen
,
X.
Wang
,
R. J.
Ellingson
,
J. V.
Li
, and
Y.
Yan
, “
Influence of charge transport layers on capacitance measured in halide perovskite solar cells
,”
Joule
4
,
644
(
2020
).
3.
Y.
Wang
,
R.
Lin
,
X.
Wang
,
C.
Liu
,
Y.
Ahmed
,
Z.
Huang
,
Z.
Zhang
,
H.
Li
,
M.
Zhang
,
Y.
Gao
,
H.
Luo
,
P.
Wu
,
H.
Gao
,
X.
Zheng
,
M.
Li
,
Z.
Liu
,
W.
Kong
,
L.
Li
,
K.
Liu
,
M. I.
Saidaminov
,
L.
Zhang
, and
H.
Tan
, “
Oxidation-resistant all-perovskite tandem solar cells in substrate configuration
,”
Nat. Commun.
14
,
1819
(
2023
).
4.
N. K.
Jayswal
,
S.
Rijal
,
B.
Subedi
,
I.
Subedi
,
Z.
Song
,
R. W.
Collins
,
Y.
Yan
, and
N. J.
Podraza
, “
Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices
,”
Sol. Energy
228
,
38
(
2021
).
5.
B.
Subedi
,
Z.
Song
,
C.
Chen
,
C.
Li
,
K.
Ghimire
,
M. M.
Junda
,
I.
Subedi
,
Y.
Yan
, and
N. J.
Podraza
, “
Optical and electronic losses arising from physically mixed interfacial layers in perovskite solar cells
,”
ACS Appl. Mater. Interfaces
13
,
4923
(
2021
).
6.
M. M.
Junda
,
D.
Zhao
,
B.
Subedi
,
C.
Wang
,
C.
Chen
,
Y.
Yan
, and
N. J.
Podraza
, “
Atmospherically induced defects in (FASnI3)0.6(MAPbI3 − 3xCl3x)0.4 perovskites
,”
J. Phys. D: Appl. Phys.
52
,
175102
(
2019
).
7.
B.
Subedi
,
L.
Guan
,
Y.
Yu
,
K.
Ghimire
,
P.
Uprety
,
M. M.
Junda
,
Y.
Yan
, and
N. J.
Podraza
, “
Formamidinium + cesium lead triiodide perovskite thin films: Optical properties and devices
,” in
IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC)
(
IEEE
,
2018
).
8.
C.
Chen
,
D.
Wu
,
M.
Yuan
,
C.
Yu
,
J.
Zhang
,
C.
Li
, and
Y.
Duan
, “
Spectroscopic ellipsometry study of CsPbBr3 perovskite thin films prepared by vacuum evaporation
,”
J. Phys. D: Appl. Phys.
54
,
224002
(
2021
).
9.
M.
Hasan
,
K.
Lyon
,
L.
Trombley
,
C.
Smith
, and
A.
Zakhidov
, “
Thickness measurement of multilayer film stack in perovskite solar cell using spectroscopic ellipsometry
,”
AIP Adv.
9
,
125107
(
2019
).
10.
G.
Mannino
,
I.
Deretzis
,
E.
Smecca
,
F.
Giannazzo
,
S.
Valastro
,
G.
Fisicaro
,
A.
La Magna
,
D.
Ceratti
, and
A.
Alberti
, “
CsPbBr3, MAPbBr3, and FAPbBr3 bromide perovskite single crystals: Interband critical points under dry N2 and optical degradation under humid air
,”
J. Phys. Chem. C
125
,
4938
(
2021
).
11.
P.
Löper
,
M.
Stuckelberger
,
B.
Niesen
,
J.
Werner
,
M.
Filipič
,
S.-J.
Moon
,
J.-H.
Yum
,
M.
Topič
,
S.
De Wolf
, and
C.
Ballif
, “
Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry
,”
J. Phys. Chem. Lett.
6
,
66
(
2015
).
12.
M.
Kato
,
T.
Fujiseki
,
T.
Miyadera
,
T.
Sugita
,
S.
Fujimoto
,
M.
Tamakoshi
,
M.
Chikamatsu
, and
H.
Fujiwara
, “
Universal rules for visible-light absorption in hybrid perovskite materials
,”
J. Appl. Phys.
121
,
115501
(
2017
).
13.
Hybrid Perovskite Solar Cells
, edited by
H.
Fujiwara
(
Wiley-VCH Verlag
,
Weinheim, Germany
,
2021
).
14.
H.
Li
,
C.
Cui
,
X.
Xu
,
S.
Bian
,
C.
Ngaojampa
,
P.
Ruankham
, and
A. P.
Jaroenjittchai
, “
A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry
,”
Sol. Energy
212
,
48
(
2020
).
15.
B.
Johs
,
C. M.
Herzinger
,
J. H.
Dinan
,
A.
Cornfeld
, and
J. D.
Benson
, “
Development of a parametric optical constant model for Hg1−xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth
,”
Thin Solid Films
313-314
,
137
142
(
1998
).
16.
C. M.
Herzinger
,
B.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
, “
Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation
,”
J. Appl. Phys.
83
,
3323
(
1998
).
17.
B.
Johs
and
J. S.
Hale
, “
Dielectric function representation by B-splines
,”
Phys. Status Solidi A
205
,
715
719
(
2008
).
18.
G. E.
Jellison
, Jr.
and
F. A.
Modine
, “
Parameterization of the optical functions of amorphous materials in the interband region
,”
Appl. Phys. Lett.
69
,
371
(
1996
).
19.
A.
Tejada
,
S.
Peters
,
A.
Al-Ashouri
,
S. H.
Turren-Cruz
,
A.
Abate
,
S.
Albrecht
,
F.
Ruske
,
B.
Rech
,
J. A.
Guerra
, and
L.
Korte
, “
Hybrid perovskite degradation from an optical perspective: A spectroscopic ellipsometry study from the deep ultraviolet to the middle infrared
,”
Adv. Opt. Mater.
10
(
3
),
2101553
(
2022
).
20.
D. E.
Aspnes
, “
Modulation spectroscopy/electric field effects on the dielectric function of semiconductors
,” in
From Handbook on Semiconductors
, edited by
M.
Balkanski
(
North Holland
,
1980
), Vol.
2
.
21.
CompleteEASE Software Manual (J. A. Woollam Co., Lincoln, NE,
2020
).
22.
M. S.
Tumusange
,
B.
Subedi
,
C.
Chen
,
M. M.
Junda
,
Z.
Song
,
Y.
Yan
, and
N. J.
Podraza
, “
Impact of humidity and temperature on the stability of the optical properties and structure of MAPbI3, MA0.7FA0.3PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 perovskite thin films
,”
Materials
14
,
4054
(
2021
).
23.
H.
Tompkins
and
E. A.
Irene
,
Handbook of Ellipsometry
(
William Andrew
,
2005
).
24.
R. de L.
Kronig
, “
On the theory of dispersion of x-rays
,”
J. Opt. Soc. Am.
12
,
547
557
(
1926
).
25.
F.
Abdel-Wahab
,
I. M.
Ashraf
, and
A. A.
Montaser
, “
Spectroscopic ellipsometry study of TlGaSeS layered crystal
,”
Optik
178
,
813
(
2019
).
26.
S.
Han
,
F. S.
Hasoon
,
H. A.
Al-Thani
,
A. M.
Hermann
, and
D. H.
Levi
, “
Effect of Cu deficiency on the defect levels of Cu0.86In1.09Se2.05 determined by spectroscopic ellipsometry
,”
Appl. Phys. Lett.
10
,
021903
(
2005
).
27.
F.
Abdel-Wahab
,
I. M.
Ashraf
,
A. A.
Shaltout
,
A.
Badawi
,
S. I.
Ahmed
, and
M. E.
Hassan
, “
Ellipsometric study of the optical properties of TlInSeS layered crystal
,”
Opt. Mater.
114
,
110958
(
2021
).
28.
A. M. A.
Leguy
,
P.
Azarhoosh
,
M. I.
Alonso
,
M.
Campoy-Quiles
,
O. J.
Weber
,
J.
Yao
,
D.
Bryant
,
M. T.
Weller
,
J.
Nelson
,
A.
Walsh
,
M.
van Schilfgaarde
, and
P. R. F.
Barnes
, “
Experimental and theoretical optical properties of methylammonium lead halide perovskites
,”
Nanoscale
8
,
6317
6327
(
2016
).
29.
C.
Emminger
,
F.
Abadizaman
,
N. S.
Samarasingha
,
T. E.
Tiwald
, and
S.
Zollner
, “
Temperature dependent dielectric function and direct bandgap of Ge
,”
J. Vac. Sci. Technol. B
38
(
1
),
012202
(
2020
).
30.
F.
Urbach
, “
The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids
,”
Phys. Rev.
92
,
1324
(
1953
).
31.
B.
Subedi
,
C.
Li
,
M. M.
Junda
,
Z.
Song
,
Y.
Yan
, and
N. J.
Podraza
, “
Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI3)x(MAPbI3)1-x perovskite films and solar cells
,”
J. Chem. Phys.
152
,
064705
(
2020
).
32.
E.
Amonette
,
P.
Dulal
,
D.
Sotir
,
M.
Barone
,
D.
Schlom
, and
N. J.
Podraza
, “
Band gap energy and near infrared to ultraviolet complex optical properties of single crystal TbScO3
,”
Appl. Phys. Lett.
123
,
052103
(
2023
).
33.
K.
Ghimire
,
H. F.
Haneef
,
R. W.
Collins
, and
N. J.
Podraza
, “
Optical properties of single-crystal Gd3Ga5O12 from the infrared to ultraviolet
,”
Phys. Status Solidi B
252
,
2191
2198
(
2015
).
34.
T.
Brakstad
,
B. R.
Hope
,
M.
Nematollahi
,
M.
Kildemo
,
N. J.
Podraza
,
K.
Ghimire
, and
T. W.
Reenaas
, “
Ellipsometric study of the optical response of ZnS:Cr for PV applications
,”
Appl. Surf. Sci.
421
,
315
(
2017
).
35.
I.
Subedi
,
M. A.
Slocum
,
D. V.
Forbes
,
S. M.
Hubbard
, and
N. J.
Podraza
, “
Optical properties of InP from infrared to vacuum ultraviolet studied by spectroscopic ellipsometry
,”
Appl. Surf. Sci.
421
,
813
(
2017
).
36.
R. J.
Elliott
, “
Intensity of optical absorption by excitons
,”
Phys. Rev.
108
(
6
),
1384
1389
(
1957
).
37.
C.
Tanguy
, “
Optical dispersion by Wannier excitons
,”
Phys. Rev. Lett.
75
(
22
),
4090
4093
(
1995
).
38.
Y.
Jiang
,
A. M.
Soufiani
,
A.
Gentle
,
F.
Huang
,
A.
Ho-Baillie
, and
M. A.
Green
, “
Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry
,”
Appl. Phys. Lett.
108
,
061905
(
2016
).
39.
S.
John
,
C.
Soukoulis
,
M. H.
Cohen
, and
E. N.
Economou
, “
Theory of electron band tails and the Urbach optical-absorption edge
,”
Phys. Rev. Lett.
57
(
14
),
1777
1780
(
1986
).
40.
E.
Ugur
,
M.
Ledinský
,
T. G.
Allen
,
J.
Holovský
,
A.
Vlk
, and
S.
De Wolf
, “
Life on the Urbach edge
,”
J. Phys. Chem. Lett.
13
(
33
),
7702
7711
(
2022
).
41.
A. B.
Djurisić
and
E. H.
Li
, “
Optical properties of graphite
,”
J. Appl. Phys.
85
,
7404
7410
(
1999
).
42.
J. K.
Katahara
and
H. W.
Hillhouse
, “
Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
,”
J. Appl. Phys.
116
(
17
),
173504
(
2014
).
43.
S. J.
Ikhmayies
and
R. N.
Ahmad-Bitar
, “
A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films
,”
J. Mater. Res. Technol.
2
(
3
),
221
227
(
2013
).
44.
S.
Ebrahimi
and
B.
Yarmand
, “
Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications
,”
Physica B
593
,
412292
(
2020
).
45.
A. V.
Subashiev
,
O.
Semyonov
,
Z.
Chen
, and
S.
Luryi
, “
Urbach tail studies by luminescence filtering in moderately doped bulk InP
,”
Appl. Phys. Lett.
97
(
18
),
181914
(
2010
).
46.
H.
Fujiwara
and
R. W.
Collins
,
Spectroscopic Ellipsometry for Photovoltaics: Volume 1: Fundamental Principles and Solar Cell Characterization
(
Springer
,
2019
).
47.
M. L.
Boas
,
Mathematical Methods in the Physical Sciences
(
John Wiley & Sons
,
2006
).
48.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover
,
1964
).
49.
K.
Ghimire
,
D.
Zhao
,
A. J.
Cimaroli
,
W.
Ke
,
Y.
Yan
, and
N. J.
Podraza
, “
Optical monitoring of CH3NH3PbI3 thin films upon atmospheric exposure
,”
J. Phys. D: Appl. Phys.
49
,
405102
(
2016
).
50.
B. D.
Johs
and
C. M.
Herzinger
, “
Quantifying the accuracy of ellipsometer systems
,”
Phys. Status Solidi C
5
,
1031
1035
(
2008
).
51.
M.
Shirayama
,
H.
Kadowaki
,
T.
Miyadera
,
T.
Sugita
,
M.
Tamakoshi
,
M.
Kato
,
T.
Fujiseki
,
D.
Murata
,
S.
Hara
,
T. N.
Murakami
,
S.
Fujimoto
,
M.
Chikamatsu
, and
H.
Fujiwara
, “
Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3
,”
Phys. Rev. Appl.
5
,
014012
(
2016
).
52.
B.
Subedi
,
C.
Li
,
C.
Chen
,
D.
Liu
,
M. M.
Junda
,
Z.
Song
,
Y.
Yan
, and
N. J.
Podraza
, “
Urbach energy and open-circuit voltage deficit for mixed anion–cation perovskite solar cells
,”
ACS Appl. Mater. Interfaces
14
,
7796
(
2022
).
53.
J.
Lee
,
P. I.
Rovira
,
I.
An
, and
R. W.
Collins
, “
Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth
,”
Rev. Sci. Instrum.
69
,
1800
1810
(
1998
).
54.
B. D.
Johs
,
J. A.
Woollam
,
C. M.
Herzinger
,
J. N.
Hilfiker
,
R. A.
Synowicki
, and
C. L.
Bungay
, “
Overview of variable-angle spectroscopic ellipsometry (VASE): II. Advanced applications
,”
Proc. SPIE
10294
,
1029404
(
1999
).
55.
D. E.
Aspnes
,
J. B.
Theeten
, and
F.
Hottier
, “
Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry
,”
Phys. Rev. B
20
,
3292
3302
(
1979
).
56.
S.
Zollner
, “
Model dielectric functions for native oxides on compound semiconductors
,”
Appl. Phys. Lett.
63
,
2523
(
1993
).
57.
J.
Humlicek
, “
Data analysis for nanomaterials: Effective medium approximation, its limits and implementations
,” in
Ellipsometry at the Nanoscale
, edited by
M.
Losurdo
and
K.
Hingerl
(
Springer
,
Berlin, Heidelberg
,
2013
).
58.
H.
Fujiwara
, “
Effect of roughness on ellipsometry analysis
,” in
Spectroscopic Ellipsometry for Photovoltaics, Springer Series in Optical Sciences
, Vol.
212
, edited by
H.
Fujiwara
and
R.
Collins
(
Springer
,
Cham
,
2018
).
59.
M. A. R.
Alaani
,
P.
Koirala
,
P.
Pradhan
,
A. B.
Phillips
,
N. J.
Podraza
,
M. J.
Heben
, and
R. W.
Collins
, “
Tailoring the CdS/CdSe/CdTe multilayer structure for optimization of photovoltaic device performance guided by mapping spectroscopic ellipsometry
,”
Sol. Energy Mater. Sol. Cells
221
,
110907
(
2021
).

Supplementary Material

You do not currently have access to this content.