The confinement of light by Littrow blazed grating structures is explored for targeted device operation principles. For passive devices, these grating structures are explored in one and two-dimensional versions to study resonant pixel with sizes of about ten grating periods (for 4.5 μm-side), which retain a CMOS compatible design. The resonances are found to substantially enhance the weak silicon absorption at 940 nm, a wavelength of interest for, e.g., distance ranging and face recognition, and to achieve a 7.5° angular tolerance. The addition of gain and loss in generic Littrow structures that display an original dispersion made of crossing manifold is next considered, with a view to the issue of broad-area laser modal control.

1.
O.
Khayam
,
H.
Benisty
, and
C.
Cambournac
,
Phys. Rev. B
78
,
153107
(
2008
).
2.
H.
Kurt
,
H.
Benisty
,
O. K. T.
Melo
, and
C.
Cambournac
,
J. Opt. Soc. Am. B
25
,
C1
(
2008
).
3.
4.
H.
Benisty
,
Photonics Nanostruct. Fund. Appl.
7
,
115
(
2009
).
5.
H.
Benisty
,
N.
Piskunov
,
P.
Kashkarov
, and
O.
Khayam
,
Phys. Rev. A
84
,
063825
(
2011
).
6.
H.
Benisty
and
N.
Piskunov
,
Appl. Phys. Lett.
102
,
151107
(
2013
).
7.
Y.
Demkov
,
P. B.
Kurasov
, and
V.
Ostrovsky
,
J. Phys. A
28
,
4361
(
1995
).
8.
Y.
Demkov
and
V.
Ostrovsky
,
J. Phys. B
28
,
403
(
1995
).
9.
O.
Khayam
,
C.
Cambournac
,
H.
Benisty
,
M.
Ayre
,
R.
Brenot
,
G.-H.
Duan
, and
W.
Pernice
,
Appl. Phys. Lett.
91
,
041111
(
2007
).
10.
F.
Bardonnet
,
A.
Crocherie
,
M.
Barlas
,
Q.
Abadie
, and
C.
Jamin-Mornet
, “
Pixels with add-on structures to enhance quantum efficiency in the near infrared
,” Proc. SPIE 11871, Optical Design and Engineering VIII, 118710Y (12 September 2021).
11.
S.
Yokogawa
,
I.
Oshiyama
,
H.
Ikeda
,
Y.
Ebiko
,
T.
Hirano
,
S.
Saito
,
T.
Oinoue
,
Y.
Hagimoto
, and
H.
Iwamoto
,
Sci. Rep.
7
,
3832
(
2017
).
12.
B.
Qi
,
H.-Z.
Chen
,
L.
Ge
,
P.
Berini
, and
R.-M.
Ma
,
Adv. Opt. Mater.
7
,
1900694
(
2019
).
13.
R.
Yao
,
C.-S.
Lee
,
V.
Podolskiy
, and
W.
Guo
,
Laser Photonics Rev.
13
,
1800154
(
2019
).
14.
V.
Brac de la Perrière
,
Q.
Gaimard
,
H.
Benisty
,
A.
Ramdane
, and
A.
Lupu
,
Nanophotonics
10
,
1309
(
2021
).
15.
M.
Radziunas
,
R.
Herrero
,
M.
Botey
, and
K.
Staliunas
,
J. Opt. Soc. Am. A
32
,
993
(
2015
).
16.
M. S.
Ünlü
,
M. K.
Emsley
,
O. I.
Dosunmu
,
P.
Muller
, and
Y.
Leblebici
,
J. Vac. Sci. Technol. A
22
,
781
(
2004
).
17.
S.
Jeong
,
M.
McGehee
, and
Y.
Cui
,
Nat. Commun.
4
,
2950
(
2013
).
18.
Y.
Gao
,
H.
Cansizoglu
,
K. G.
Polat
,
S.
Ghandiparsi
,
A.
Kaya
,
H. H.
Mamtaz
,
A. S.
Mayet
,
Y.
Wang
,
X.
Zhang
,
T.
Yamada
,
E. P.
Devine
,
A. F.
Elrefaie
,
S.-Y.
Wang
, and
M. S.
Islam
,
Nat. Photonics
11
,
301
(
2017
).
19.
H.
Lin
,
H.-Y.
Cheung
,
F.
Xiu
,
F.
Wang
,
S.
Yip
,
N.
Han
,
T.
Hung
,
J.
Zhou
,
J. C.
Ho
, and
C.-Y.
Wong
,
J. Mater. Chem. A
1
,
9942
(
2013
).
20.
K.
Kim
,
S.
Yoon
,
M.
Seo
,
S.
Lee
,
H.
Cho
,
M.
Meyyappan
, and
C.-K.
Baek
,
Nat. Electron.
2
,
572
(
2019
).
21.
Y.-C.
Lee
,
C.-F.
Huang
,
J.-Y.
Chang
, and
M.-L.
Wu
,
Opt. Express
16
,
7969
(
2008
).
22.
F.
Omeis
,
S.
Villenave
,
M.
Besbes
,
C.
Sauvan
, and
H.
Benisty
,
Photonics Nanostruct. Fund. Appl.
53
,
101106
(
2023
).
23.
S. K.
Özdemir
,
S.
Rotter
,
F.
Nori
, and
L.
Yang
,
Nat. Mater.
18
,
783
(
2019
).
24.
L.
Feng
,
Z. J.
Wong
,
R.-M.
Ma
,
Y.
Wang
, and
X.
Zhang
,
Science
346
,
972
(
2014
).
25.
H.
Benisty
,
A.
Lupu
, and
A.
Degiron
,
Phys. Rev. A
91
,
053825
(
2015
).
26.
W. W.
Ahmed
,
S.
Kumar
,
J.
Medina
,
M.
Botey
,
R.
Herrero
, and
K.
Staliunas
,
Opt. Lett.
43
,
2511
(
2018
).
27.
E. A.
Yarunova
,
A. A.
Krents
, and
N. E.
Molevich
,
Opt. Lett.
48
,
4021
(
2023
).
28.
A.
Zeghuzi
,
J.-P.
Koester
,
H.
Wenzel
,
H.
Christopher
, and
A.
Knigger
, “
Diode laser having reduced beam divergence
,” U.S. patent 11,677,214 B2 (June
2023
).
29.
R. E.
Bartolo
,
W. W.
Bewley
,
I.
Vurgaftman
,
C. L.
Felix
,
J. R.
Meyer
, and
M. J.
Yang
,
Appl. Phys. Lett.
76
,
3164
(
2000
).
30.
K.
Paschke
,
R.
Güther
,
J.
Fricke
,
F.
Bugge
,
G.
Erbert
, and
G.
Tränkle
,
Electron. Lett.
39
,
369
(
2003
).
You do not currently have access to this content.