Microresonator Kerr optical frequency combs currently constitute a well-established research area in integrated, nonlinear, and quantum photonics. These systems have found a plethora of technological applications, while serving as an excellent platform to investigate fundamental scientific topics such as light–matter interactions, pattern formation in driven-dissipative systems, or entangled twin-photon generation. We here provide a brief overview of the topic, highlight some of the most recent advances, and discuss a few of the main challenges ahead in this field.

1.
Y. K.
Chembo
, “
Kerr optical frequency combs: Theory, experiments and applications
,”
Nanophotonics
5
,
214
(
2016
).
2.
D. V.
Strekalov
,
C.
Marquardt
,
A. B.
Matsko
,
H. G. L.
Schwefel
, and
G.
Leuchs
, “
Nonlinear and quantum optics with whispering gallery resonators
,”
J. Opt.
18
,
123002
(
2016
).
3.
G.
Lin
,
A.
Coillet
, and
Y. K.
Chembo
, “
Nonlinear photonics with high-Q whispering gallery mode resonators
,”
Adv. Opt. Photonics
9
,
828
(
2017
).
4.
A.
Pasquazi
,
M.
Peccianti
,
L.
Razzari
,
D. J.
Moss
,
S.
Coen
,
M.
Erkintalo
,
Y. K.
Chembo
,
T.
Hansson
,
S.
Wabnitz
,
P.
Del'Haye
,
X.
Xue
,
A. M.
Weiner
, and
R.
Morandotti
, “
Micro-combs: A novel generation of optical sources
,”
Phys. Rep.
729
,
1
81
(
2018
).
5.
A. L.
Gaeta
,
M.
Lipson
, and
T. J.
Kippenberg
, “
Photonic-chip-based frequency combs
,”
Nat. Photonics
13
,
158
169
(
2019
).
6.
T. J.
Kippenberg
,
S. M.
Spillane
, and
K. J.
Vahala
, “
Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity
,”
Phys. Rev. Lett.
93
,
083904
(
2004
).
7.
A. A.
Savchenkov
,
A. B.
Matsko
,
D.
Strekalov
,
M.
Mohageg
,
V.
Ilchenko
, and
L.
Maleki
, “
Low threshold optical oscillations in a whispering gallery mode CaF2 resonator
,”
Phys. Rev. Lett.
93
,
243905
(
2004
).
8.
P.
Del'Haye
,
A.
Schliesser
,
O.
Arcizet
,
T.
Wilken
,
R.
Holzwarth
, and
T.
Kippenberg
, “
Optical frequency comb generation from a monolithic microresonator
,”
Nature
450
,
1214
1217
(
2007
).
9.
Y. K.
Chembo
,
D. V.
Strekalov
, and
N.
Yu
, “
Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators
,”
Phys. Rev. Lett.
104
,
103902
(
2010
).
10.
Y. K.
Chembo
and
N.
Yu
, “
Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators
,”
Phys. Rev. A
82
,
033801
(
2010
).
11.
Y. K.
Chembo
and
C. R.
Menyuk
, “
Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators
,”
Phys. Rev. A
87
,
053852
(
2013
).
12.
L. A.
Lugiato
and
R.
Lefever
, “
Spatial dissipative structures in passive optical systems
,”
Phys. Rev. Lett.
58
,
2209
2211
(
1987
).
13.
M.
Haelterman
,
S.
Trillo
, and
S.
Wabnitz
, “
Additive-modulation instability ring laser in the normal dispersion regime of a fiber
,”
Opt. Lett.
17
,
745
(
1992
).
14.
A. B.
Matsko
,
A. A.
Savchenkov
,
W.
Liang
,
V. S.
Ilchenko
,
D.
Seidel
, and
L.
Maleki
, “
Mode-locked Kerr frequency combs
,”
Opt. Lett.
36
,
2845
(
2011
).
15.
S.
Coen
,
H. G.
Randle
,
T.
Sylvestre
, and
M.
Erkintalo
, “
Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model
,”
Opt. Lett.
38
,
37
(
2013
).
16.
C.
Godey
,
I. V.
Balakireva
,
A.
Coillet
, and
Y. K.
Chembo
, “
Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes
,”
Phys. Rev. A
89
,
063814
(
2014
).
17.
Y. K.
Chembo
, “
Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light
,”
Phys. Rev. A
93
,
033820
(
2016
).
18.
W.
Liang
,
D.
Eliyahu
,
V. S.
Ilchenko
,
A. A.
Savchenkov
,
A. B.
Matsko
,
D.
Seidel
, and
L.
Maleki
, “
High spectral purity Kerr frequency comb radio frequency photonic oscillator
,”
Nat. Commun.
6
,
7957
(
2015
).
19.
S.-W.
Huang
,
J.
Yang
,
J.
Lim
,
H.
Zhou
,
M.
Yu
,
D.-L.
Kwong
, and
C.
Wong
, “
A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz
,”
Sci. Rep.
5
,
13355
(
2015
).
20.
S.-W.
Huang
,
J.
Yang
,
S.-H.
Yang
,
M.
Yu
,
D.-L.
Kwong
,
T.
Zelevinsky
,
M.
Jarrahi
, and
C. W.
Wong
, “
Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip
,”
Phys. Rev. X
7
,
041002
(
2017
).
21.
E.
Lucas
,
P.
Brochard
,
R.
Bouchand
,
S.
Schilt
,
T.
Südmeyer
, and
T. J.
Kippenberg
, “
Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator
,”
Nat. Commun.
11
,
374
(
2020
).
22.
M.
Tan
,
X.
Xu
,
X.
Wu
,
R.
Morandotti
,
A.
Mitchell
, and
D.
Moss
, “
Ultra-high bandwidth radio frequency and microwave photonic signal processing based on Kerr micro-combs
,”
Adv. Phys. X
6
,
1838946
(
2021
).
23.
A.
Dutt
,
K.
Luke
,
S.
Manipatruni
,
A. L.
Gaeta
,
P.
Nussenzveig
, and
M.
Lipson
, “
On-chip optical squeezing
,”
Phys. Rev. Appl.
3
,
044005
(
2015
).
24.
M.
Kues
,
C.
Reimer
,
P.
Roztocki
,
L. R.
Cortés
,
S.
Sciara
,
B.
Wetzel
,
Y.
Zhang
,
A.
Cino
,
S. T.
Chu
,
B. E.
Little
,
D. J.
Moss
,
L.
Caspani
,
J.
Azana
, and
R.
Morandotti
, “
On-chip generation of high-dimensional entangled quantum states and their coherent control
,”
Nature
546
,
622
626
(
2017
).
25.
J. A.
Jaramillo-Villegas
,
P.
Imany
,
O. D.
Odele
,
D. E.
Leaird
,
Z.-Y.
Ou
,
M.
Qi
, and
A. M.
Weiner
, “
Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb
,”
Optica
4
,
655
658
(
2017
).
26.
M.
Kues
,
C.
Reimer
,
J. M.
Lukens
,
W. J.
Munro
,
A. M.
Weiner
,
R.
Moss
, and
D. J.
Morandotti
, “
Quantum optical microcombs
,”
Nat. Photonics
13
,
170
(
2019
).
27.
X.
Lu
,
Q.
Li
,
D. A.
Westly
,
G.
Moille
,
A.
Singh
,
V.
Anant
, and
K.
Srinivasan
, “
Chip-integrated visible–telecom entangled photon pair source for quantum communication
,”
Nat. Phys.
15
,
373
381
(
2019
).
28.
F.
Samara
,
A.
Martin
,
C.
Autebert
,
M.
Karpov
,
T. J.
Kippenberg
,
H.
Zbinden
, and
R.
Thew
, “
High-rate photon pairs and sequential time-bin entanglement with Si3N4 microring resonators
,”
Optica
27
,
19309
19318
(
2019
).
29.
M. A.
Guidry
,
D. M.
Lukin
,
K. Y.
Yang
,
R.
Trivedi
, and
J.
Vučković
, “
Quantum optics of soliton microcombs
,”
Nat. Photonics
16
,
52
58
(
2022
).
30.
Z.
Yang
,
M.
Jahanbozorgi
,
D.
Jeong
,
S.
Sun
,
O.
Pfister
,
H.
Lee
, and
X.
Yi
, “
A squeezed quantum microcomb on a chip
,”
Nat. Commun.
12
,
4781
(
2021
).
31.
M.
Jahanbozorgi
,
Z.
Yang
,
S.
Sun
,
H.
Chen
,
R.
Liu
,
B.
Wang
, and
X.
Yi
, “
Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits
,”
Optica
10
,
1100
(
2023
).
32.
J.
Pfeifle
,
V.
Brasch
,
M.
Lauermann
,
Y.
Yu
,
D.
Wegner
,
T.
Herr
,
K.
Hartinger
,
P.
Schindler
,
J.
Li
,
D.
Hillerkuss
,
R.
Schmogrow
,
C.
Weimann
,
R.
Holzwarth
,
W.
Freude
,
J.
Leuthold
,
T. J.
Kippenberg
, and
C.
Koos
, “
Coherent terabit communications with microresonator Kerr frequency combs
,”
Nat. Photonics
8
,
375
(
2014
).
33.
J.
Pfeifle
,
A.
Coillet
,
R.
Henriet
,
K.
Saleh
,
P.
Schindler
,
C.
Weimann
,
W.
Freude
,
I. V.
Balakireva
,
L.
Larger
,
C.
Koos
, and
Y. K.
Chembo
, “
Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications
,”
Phys. Rev. Lett.
114
,
093902
(
2015
).
34.
P.
Marin-Palomo
,
J. N.
Kemal
,
M.
Karpov
,
A.
Kordts
,
J.
Pfeifle
,
M. H.
Pfeiffer
,
P.
Trocha
,
S.
Wolf
,
V.
Brasch
,
M. H.
Anderson
et al, “
Microresonator-based solitons for massively parallel coherent optical communications
,”
Nature
546
,
274
279
(
2017
).
35.
A.
Fülöp
,
M.
Mazur
,
A.
Lorences-Riesgo
,
Ó. B.
Helgason
,
P.-H.
Wang
,
Y.
Xuan
,
D. E.
Leaird
,
M.
Qi
,
P. A.
Andrekson
,
A. M.
Weiner
et al, “
High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators
,”
Nat. Commun.
9
,
1598
(
2018
).
36.
A. A.
Jorgensen
,
D.
Kong
,
M. R.
Henriksen
,
F.
Klejs
,
Z.
Ye
,
O. B.
Helgason
,
H. E.
Hansen
,
H.
Hu
,
M.
Yankov
,
S.
Forchhammer
,
P.
Andrekson
,
A.
Larsson
,
M.
Karlsson
,
J.
Schroder
,
Y.
Sasaki
,
K.
Aikawa
,
J. W.
Thomsen
,
T.
Morioka
,
M.
Galili
,
V.
Torres-Company
, and
L. K.
Oxenlowe
, “
Petabit-per-second data transmission using a chip-scale microcomb ring resonator source
,”
Nat. Photonics
16
,
798
(
2022
).
37.
A.
Rizzo
,
A.
Novick
,
V.
Gopal
,
B. Y.
Kim
,
X.
Ji
,
S.
Daudlin
,
Y.
Okawachi
,
Q.
Cheng
,
M.
Lipson
,
A. L.
Gaeta
, and
K.
Bergman
, “
Massively scalable Kerr comb-driven silicon photonic link
,”
Nat. Photonics
17
,
781
(
2023
).
38.
C.
Fredrick
,
F.
Olsen
,
R.
Terrien
,
S.
Mahadevan
,
F.
Quinlan
, and
S. A.
Diddams
, “
Thermal-light heterodyne spectroscopy with frequency comb calibration
,”
Optica
9
,
221
230
(
2022
).
39.
M.-G.
Suh
,
Q.-F.
Yang
,
K. Y.
Yang
,
X.
Yi
, and
K. J.
Vahala
, “
Microresonator soliton dual-comb spectroscopy
,”
Science
354
,
600
603
(
2016
).
40.
A.
Dutt
,
C.
Joshi
,
X.
Ji
,
Y.
Okawachi
,
K.
Luke
,
A. L.
Gaeta
, and
M.
Lipson
, “
On-chip dual-comb source for spectroscopy
,”
Sci. Adv.
4
,
041002
(
2018
).
41.
P.
Trocha
,
M.
Karpov
,
D.
Ganin
,
M. H.
Pfeiffer
,
A.
Kordts
,
S.
Wolf
,
J.
Krockenberger
,
P.
Marin-Palomo
,
C.
Weimann
,
S.
Randel
,
W.
Freude
,
T. J.
Kippenberg
, and
C.
Koos
, “
Ultrafast optical ranging using microresonator soliton frequency combs
,”
Science
359
,
887
891
(
2018
).
42.
X.
Xu
,
M.
Tan
,
B.
Corcoran
,
J.
Wu
,
T. G.
Nguyen
,
A.
Boes
,
S. T.
Chu
,
B. E.
Little
,
R.
Morandotti
,
A.
Mitchell
,
D. G.
Hicks
, and
D. J.
Moss
, “
Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks
,”
Laser Photonics Rev
14
,
2000070
(
2020
).
43.
S.-W.
Huang
,
H.
Zhou
,
J.
Yang
,
J.
McMillan
,
A.
Matsko
,
M.
Yu
,
D.-L.
Kwong
,
L.
Maleki
, and
C.
Wong
, “
Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators
,”
Phys. Rev. Lett.
114
,
053901
(
2015
).
44.
B.
Li
,
S.-W.
Huang
,
Y.
Li
,
C. W.
Wong
, and
K. K.
Wong
, “
Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics
,”
Nat. Commun.
8
,
61
(
2017
).
45.
E.
Obruzd
,
M.
Rainer
,
A.
Harutyunyan
,
M. H.
Anderson
,
J.
Liu
,
M.
Geiselmann
,
B.
Chazelas
,
S.
Kundermann
,
S.
Lecomte
,
M.
Cecconi
,
A.
Ghedina
,
E.
Molinari
,
F.
Pepe
,
F.
Wildi
,
F.
Bouchy
,
T. J.
Kippenberg
, and
T.
Herr
, “
A microphotonic astrocomb
,”
Nat. Photonics
13
,
31
35
(
2019
).
46.
M.-G.
Suh
and
K. J.
Vahala
, “
Soliton microcomb range measurement
,”
Science
359
,
884
887
(
2018
).
47.
C.
Bao
,
M.
Suh
, and
K.
Vahala
, “
Microresonator soliton dual-comb imaging
,”
Optica
6
,
1110
1116
(
2019
).
48.
G.
Moille
,
E. F.
Perez
,
J. R.
Stone
,
A.
Rao
,
X.
Lu
,
T. S.
Rahman
,
Y. K.
Chembo
, and
K.
Kartik
, “
Ultra-broadband Kerr microcomb through soliton spectral translation
,”
Nat. Commun.
12
,
7275
(
2021
).
49.
S.
Mittal
,
G.
Moille
,
K.
Srinivasan
,
Y. K.
Chembo
, and
M.
Hafezi
, “
Topological frequency combs and nested temporal solitons
,”
Nat. Phys.
17
,
1169
(
2021
).
50.
L.
Maleki
, “
The optoelectronic oscillator
,”
Nat. Photonics
5
,
728
(
2011
).
51.
S.
Diallo
,
C. R.
Menyuk
, and
Y. K.
Chembo
, “
Platform-independent optimization of pump power threshold for microcomb generation
,”
IEEE Photonics J.
14
,
3042904
(
2022
).
52.
B.
Stern
,
X.
Ji
,
Y.
Okawachi
,
A. L.
Gaeta
, and
M.
Lipson
, “
Battery-operated integrated frequency comb generator
,”
Nature
562
,
401
(
2018
).
You do not currently have access to this content.