In a gas adsorption–desorption process, gas desorption consumes energy, as well. Hence, the development of gas adsorption–desorption methods and/or adsorbent materials with low-energy consumption for precisely controlling the reversible process is still an open issue. Taking carbon dioxide as an example, this study proposed a carbon nanospring as a unit of an adsorbent model to control the capacity for gas adsorption (CGA), via expanding for adsorption or self-shrinking for desorption by the nanoscroll made from partly hydrogenated graphene ribbon (H-GR). The numerical results obtained from the molecular dynamics approach demonstrate that the CGA of H-GR can be precisely controlled by changing the deformation of H-GR. The adjustable scope of CGA, called capacity for gas desorption, depends on the gas density and the loading speed. However, the ratio of desorption slightly depends on the gas density, which benefits gas capturing in potential application of the present material model.

1.
J. W.
Lee
,
S.
Kim
,
I. T.
Pineda
, and
Y. T.
Kang
,
Renewable Sustainable Energy Rev.
138
,
110524
(
2021
).
2.
U.
Kamran
and
S.-J.
Park
,
J. Cleaner Prod.
290
,
125776
(
2021
).
3.
M.
Ding
,
R. W.
Flaig
,
H.-L.
Jiang
, and
O. M.
Yaghi
,
Chem. Soc. Rev.
48
(
10
),
2783
2828
(
2019
).
4.
M.
Sevilla
and
A. B.
Fuertes
,
Energy Environ. Sci.
4
(
5
),
1765
1771
(
2011
).
5.
K.
Rahimi
,
S.
Riahi
,
M.
Abbasi
, and
Z.
Fakhroueian
,
J. Environ. Manage.
242
,
81
89
(
2019
).
6.
K.
Takeuchi
,
S.
Yamamoto
,
Y.
Hamamoto
,
Y.
Shiozawa
,
K.
Tashima
,
H.
Fukidome
,
T.
Koitaya
,
K.
Mukai
,
S.
Yoshimoto
, and
M.
Suemitsu
,
J. Phys. Chem. C
121
(
5
),
2807
2814
(
2017
).
7.
M.
Wang
,
Z.
Zhang
,
Y.
Gong
,
S.
Zhou
,
J.
Wang
,
Z.
Wang
,
S.
Wei
,
W.
Guo
, and
X.
Lu
,
Appl. Surf. Sci.
502
,
144067
(
2020
).
8.
H. J.
Choi
,
D.
Jo
,
J. G.
Min
, and
S. B.
Hong
,
Angew. Chem., Int. Ed.
60
(
8
),
4307
4314
(
2021
).
9.
K. V.
Kumar
,
K.
Preuss
,
L.
Lu
,
Z. X.
Guo
, and
M. M.
Titirici
,
J. Phys. Chem. C
119
(
39
),
22310
22321
(
2015
).
10.
X.
Liu
,
S.
Wei
,
S.
Zhou
,
Z.
Wu
,
M.
Wang
,
Z.
Wang
,
J.
Wang
, and
X.
Lu
,
J. CO2 Util.
26
,
588
594
(
2018
).
11.
M.
Wang
,
S.
Wei
,
Z.
Wu
,
S.
Zhou
,
Z.
Wang
,
J.
Wang
, and
X.
Lu
,
Mater. Lett.
230
,
28
31
(
2018
).
12.
J.
Jiang
,
Z.
Lu
,
M.
Zhang
,
J.
Duan
,
W.
Zhang
,
Y.
Pan
, and
J.
Bai
,
J. Am. Chem. Soc.
140
(
51
),
17825
17829
(
2018
).
13.
C.
Chen
,
B.
Li
,
L.
Zhou
,
Z.
Xia
,
N.
Feng
,
J.
Ding
,
L.
Wang
,
H.
Wan
, and
G.
Guan
,
ACS Appl. Mater. Interfaces
9
(
27
),
23060
23071
(
2017
).
14.
S.
Chu
and
A.
Majumdar
,
Nature
488
(
7411
),
294
303
(
2012
).
15.
P.
Ammendola
,
F.
Raganati
,
R.
Chirone
, and
F.
Miccio
,
Powder Technol.
373
,
446
458
(
2020
).
16.
C.
Dhoke
,
S.
Cloete
,
S.
Krishnamurthy
,
H.
Seo
,
I.
Luz
,
M.
Soukri
,
Y-k
Park
,
R.
Blom
,
S.
Amini
, and
A.
Zaabout
,
Chem. Eng. J.
380
,
122201
(
2020
).
17.
C.
Dhoke
,
A.
Zaabout
,
S.
Cloete
, and
S.
Amini
,
Ind. Eng. Chem. Res.
60
(
10
),
3779
3798
(
2021
).
18.
F.
Raganati
,
F.
Miccio
, and
P.
Ammendola
,
Energy Fuels
35
(
16
),
12845
12868
(
2021
).
19.
T. M.
McDonald
,
J. A.
Mason
,
X.
Kong
,
E. D.
Bloch
,
D.
Gygi
,
A.
Dani
,
V.
Crocella
,
F.
Giordanino
,
S. O.
Odoh
, and
W. S.
Drisdell
,
Nature
519
(
7543
),
303
308
(
2015
).
20.
Q.
Sun
,
Z.
Li
,
D. J.
Searles
,
Y.
Chen
,
G.
Lu
, and
A.
Du
,
J. Am. Chem. Soc.
135
(
22
),
8246
8253
(
2013
).
21.
X.
Li
,
T.
Guo
,
L.
Zhu
,
C.
Ling
,
Q.
Xue
, and
W.
Xing
,
Chem. Eng. J.
338
,
92
98
(
2018
).
22.
H.
Yang
,
C.
He
,
L.
Fu
,
J.
Huo
,
C.
Zhao
,
X.
Li
, and
Y.
Song
,
Chin. Chem. Lett.
32
(
10
),
3202
3206
(
2021
).
23.
C.
He
,
H.
Yang
, and
L.
Fu
,
Chin. Chem. Lett.
34
(
5
),
107581
(
2023
).
24.
Y.
Jiang
,
X.-C.
Shi
,
P.
Tan
,
S.-C.
Qi
,
C.
Gu
,
T.
Yang
,
S.-S.
Peng
,
X.-Q.
Liu
, and
L.-B.
Sun
,
Ind. Eng. Chem. Res.
59
(
50
),
21894
21900
(
2020
).
25.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
(
5696
),
666
669
(
2004
).
26.
B.
Szczęśniak
,
J.
Choma
, and
M.
Jaroniec
,
Adv. Colloid Interface Sci.
243
,
46
59
(
2017
).
27.
A.
Ruhaimi
,
C.
Hitam
,
M.
Aziz
,
N.
Hamid
,
H.
Setiabudi
, and
L.
Teh
,
Renewable Sustainable Energy Rev.
167
,
112840
(
2022
).
28.
A. K.
Mishra
and
S.
Ramaprabhu
,
AIP Adv.
1
(
3
),
032152
(
2011
).
29.
X.
Li
,
Y.
Jin
,
Q.
Xue
,
L.
Zhu
,
W.
Xing
,
H.
Zheng
, and
Z.
Liu
,
J. CO2 Util.
18
,
275
282
(
2017
).
30.
Y.
Tian
,
Y.
Lin
,
T.
Hagio
, and
Y. H.
Hu
,
Catal. Today
356
,
514
518
(
2020
).
31.
K.
Cai
,
X.
Li
,
J.
Shi
, and
Q. H.
Qin
,
Appl. Surf. Sci.
541
,
148507
(
2021
).
32.
K.
Cai
,
X.
Li
,
Z.
Zhong
,
J.
Shi
, and
Q. H.
Qin
,
Phys. Chem. Chem. Phys.
23
,
26209
(
2021
).
33.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
34.
S. J.
Stuart
and
A. B.
Tutein
,
J. Chem. Phys.
112
(
14
),
6472
6486
(
2000
).
35.
J. E.
Jones
,
Proc. R. Soc. London A
106
(738),
441
462
(
1924
).
36.
R.
Fuentes-Azcatl
and
H.
Domínguez
,
J. Mol. Model.
25
,
146
(
2019
).
37.
R.
Ravi
and
V.
Guruprasad
,
Ind. Eng. Chem. Res.
47
(
4
),
1297
1303
(
2008
).
38.
S.
Nose
,
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
39.
W. G.
Hoover
,
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
40.
G. M.
Meconi
,
R.
Tomovska
, and
R.
Zangi
,
J. CO2 Util.
32
,
92
105
(
2019
).
41.
Z.
Taheri
and
A. N.
Pour
,
J. Mol. Model.
27
,
59
(
2021
).

Supplementary Material

You do not currently have access to this content.