Occurrence of unintended gas breakdown in the narrow gaps of plasma processing chambers is one of the critical challenges in developing advanced plasma sources. We present a combined experimental and theoretical study of unintended discharges in the narrow gaps of plasma processing chambers and report significant drop of the gas breakdown voltage in the presence of a background plasma facing the gap. Experimentally measured breakdown voltages decrease in subsequent breakdown events due to wall erosion caused by the discharge. Therefore, preventing and mitigating the first discharge is of paramount importance. An analysis of kinetic simulation results indicates that the charged particle influx from the background plasma in the processing chamber into the gap is responsible for the onset of early breakdown: higher charged particle density within the gap modifies the electric field profile, allowing unintended breakdowns to occur at a significantly reduced threshold voltage.

1.
T. V.
Tsankov
,
P.
Chabert
, and
U.
Czarnetzki
,
Plasma Sources Sci. Technol.
31
(
8
),
084007
(
2022
).
2.
C.
Cho
,
K.
You
,
S.
Kim
,
Y.
Lee
,
J.
Lee
, and
S.
You
,
Materials
14
(
17
),
5036
(
2021
).
3.
D. J.
Economou
,
J. Phys. D: Appl. Phys.
47
(
30
),
303001
(
2014
).
4.
P.
Chabert
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
).
5.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
).
6.
L.
Chen
and
L.
Xu
, U.S. patent 7,744,720 (
2010
).
7.
Y.
Fu
,
H.
Wang
, and
X.
Wang
,
Rev. Mod. Plasma Phys.
7
(
1
),
10
(
2023
).
8.
J. Y.
Kim
,
I.
Kaganovich
, and
H.-C.
Lee
,
Plasma Sources Sci. Technol.
31
(
3
),
033001
(
2022
).
9.
D.
Marić
,
M.
Savić
,
J.
Sivoš
,
N.
Škoro
,
M.
Radmilović-Radjenović
,
G.
Malović
, and
Z. L.
Petrović
,
Eur. Phys. J. D
68
,
1
7
(
2014
).
10.
V. A.
Lisovskiy
,
R. O.
Osmayev
, and
V. D.
Yegorenkov
, “Gas breakdown in dc electric field in a discharge tube with flat and conical cathodes,” Boпрocы aToмнoй нayки и Teхники (
2014
).
11.
H. S.
Uhm
,
E. H.
Choi
,
G.
Cho
, and
K. W.
Whang
,
Jpn. J. Appl. Phys., Part 2
40
(
3B
),
L295
(
2001
).
12.
V.
Lisovsky
and
V.
Yegorenkov
,
J. Phys. D: Appl. Phys.
27
(
11
),
2340
(
1994
).
13.
D.
Sydorenko
, “
Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields
,” Ph.D. dissertation (
University of Saskatoon
,
2006
).
14.
D.
Sydorenko
,
I.
Kaganovich
,
Y.
Raitses
, and
A.
Smolyakov
,
Phys. Rev. Lett.
103
(
14
),
145004
(
2009
).
15.
H.
Sun
,
J.
Chen
,
I. D.
Kaganovich
,
A.
Khrabrov
, and
D.
Sydorenko
,
Phys. Rev. Lett.
129
(
12
),
125001
(
2022
).
16.
J.
Carlsson
,
A.
Khrabrov
,
I.
Kaganovich
,
T.
Sommerer
, and
D.
Keating
,
Plasma Sources Sci. Technol.
26
(
1
),
014003
(
2016
).
17.
S.
Sharma
,
S.
Patil
,
S.
Sengupta
,
A.
Sen
,
A.
Khrabrov
, and
I.
Kaganovich
,
Phys. Plasmas
29
(
6
),
063501
(
2022
).
18.
B.
Jin
,
J.
Chen
,
A. V.
Khrabrov
,
Z.
Wang
, and
L.
Xu
,
Plasma Sources Sci. Technol.
31
(
11
),
115015
(
2022
).
19.
L.
Xu
,
A. V.
Khrabrov
,
I. D.
Kaganovich
, and
T. J.
Sommerer
,
Phys. Plasmas
24
(
9
),
093511
(
2017
).
20.
H.
Sun
,
S.
Banerjee
,
S.
Sharma
,
A. T.
Powis
,
A. V.
Khrabrov
,
D.
Sydorenko
,
J.
Chen
, and
I. D.
Kaganovich
, arXiv:2306.01581 (
2023
).
21.
S.
Rauf
,
D.
Sydorenko
,
S.
Jubin
,
W.
Villafana
,
S.
Ethier
,
A.
Khrabrov
, and
I.
Kaganovich
,
Plasma Sources Sci. Technol.
32
(
5
),
055009
(
2023
).
22.
See https://github.com/PrincetonUniversity/EDIPIC-2D for detailed algorithm and source code of EDIPIC-2D.
23.
R.
Varney
,
H.
White
,
L.
Loeb
, and
D.
Posin
,
Phys. Rev.
48
(
10
),
818
(
1935
).
24.
I. D.
Kaganovich
,
M. A.
Fedotov
, and
L. D.
Tsendin
, “
Ionization instability of a Townsend discharge
,”
J. Tech. Phys.
39
(3),
241
246
(
1994
).
You do not currently have access to this content.