Refractory high- or medium-entropy alloys (RHEAs or RMEAs) with excellent high-temperature mechanical properties and softening resistance have been proven to be the potential candidates for advanced engineering applications. However, room temperature brittleness and high density have become an important challenge that needs to be addressed. In this work, the tensile mechanical behavior and the underlying deformation mechanisms of lightweight Ti40Zr20Nb13.33V26.67 RMEA at 298 and 873 K were investigated systematically. The results showed that the as-cast RMEA has a single body-centered cubic phase and low density (5.88 g/cm3) and exhibits excellent mechanical properties at 298 K, with yield strength of 1033.9 MPa, specific yield strength of 175.8 MPa·cm3/g, and tensile fracture strain of 5.3%. More importantly, it also exhibits ultrahigh strength and sufficient ductility at 873 K, with yield strength of 783.2 MPa, specific yield strength of 133.2 MPa·cm3/g, and tensile fracture strain of 5.7%. It showed that a large number of slip bands and dislocation bands are the main deformation products at 298 K, leading to excellent ductility. In comparison, high dislocation density was found between the slip bands in the samples deformed at 873 K, which can effectively hinder the motion of dislocations, resulting in strain hardening and the increase in strength. This work can provide a route for the design and fabrication of high-performance lightweight alloys, which would be beneficial for engineering applications.

1.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
,
299
303
(
2004
).
2.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A. J. B.
Vincent
, “
Microstructural development in equiatomic multicomponent alloys
,”
Mater. Sci. Eng., A
375–377
,
213
218
(
2004
).
3.
H.
Kwon
,
P.
Sathiyamoorthi
,
G. M.
Karthik
,
P.
Asghari-Rad
,
A.
Zargaran
,
H. S.
Do
,
B. J.
Lee
,
H.
Kato
, and
H. S.
Kim
, “
2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy
,”
Scr. Mater.
204
,
114157
(
2021
).
4.
X.
Wang
,
T.
Li
,
L.
Wang
,
K.
Jin
,
B.
Wang
,
Y.
Li
,
S.
Sun
, and
Y.
Xue
, “
A lightweight orthorhombic-phase strengthened TiZrVNbAl multicomponent intermetallic alloy with promising ambient ductility and high-temperature strength
,”
Mater. Sci. Eng., A
865
,
144644
(
2023
).
5.
O. N.
Senkov
,
J. M.
Scott
,
S. V.
Senkova
,
F.
Meisenkothen
,
D. B.
Miracle
, and
C. F.
Woodward
, “
Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy
,”
J. Mater. Sci.
47
,
4062
4074
(
2012
).
6.
R.
Feng
,
B.
Feng
,
M. C.
Gao
,
C.
Zhang
,
J. C.
Neuefeind
,
J. D.
Poplawsky
,
Y.
Ren
,
K.
An
,
M.
Widom
, and
P. K.
Liaw
, “
Superior high-temperature strength in a supersaturated refractory high-entropy alloy
,”
Adv. Mater.
33
,
2102401
(
2021
).
7.
O. N.
Senkov
,
S. V.
Senkova
, and
C.
Woodward
, “
Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys
,”
Acta Mater.
68
,
214
228
(
2014
).
8.
O. N.
Senkov
,
G. B.
Wilks
,
J. M.
Scott
, and
D. B.
Miracle
, “
Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
,”
Intermetallics
19
,
698
706
(
2011
).
9.
H.
Zhang
,
Y.
Zhao
,
J.
Cai
,
S.
Ji
,
J.
Geng
,
X.
Sun
, and
D.
Li
, “
High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing
,”
Mater. Des.
201
,
109462
(
2021
).
10.
M.
Wu
,
S.
Wang
,
F.
Xiao
,
G.
Shen
,
Y.
Tian
,
C.
Yang
,
G.
Zhu
,
D.
Wang
,
D.
Shu
, and
B.
Sun
, “
Designing lightweight dual-phase refractory VNbTiSi-based eutectic high-entropy alloys for use at elevated temperatures
,”
Mater. Sci. Eng., A
842
,
143112
(
2022
).
11.
B.
Wang
,
Q.
Wang
,
N.
Lu
,
X.
Liang
, and
B.
Shen
, “
Enhanced high-temperature strength of HfNbTaTiZrV refractory high-entropy alloy via Al2O3 reinforcement
,”
J. Mater. Sci. Technol.
123
,
191
200
(
2022
).
12.
Q.
Wei
,
X.
Xu
,
Q.
Shen
,
G.
Luo
,
J.
Zhang
,
J.
Li
,
Q.
Fang
,
C. T.
Liu
,
M.
Chen
,
T. G.
Nieh
, and
J.
Chen
, “
Metal-carbide eutectics with multiprincipal elements make superrefractory alloys
,”
Sci. Adv.
8
,
eabo2068
(
2022
).
13.
X. J.
Fan
,
R. T.
Qu
, and
Z. F.
Zhang
, “
Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy
,”
J. Mater. Sci. Technol.
123
,
70
77
(
2022
).
14.
S.
Wang
,
M.
Wu
,
D.
Shu
,
G.
Zhu
,
D.
Wang
, and
B.
Sun
, “
Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures
,”
Acta Mater.
201
,
517
527
(
2020
).
15.
L. H.
Mills
,
M. G.
Emigh
,
C. H.
Frey
,
N. R.
Philips
,
S. P.
Murray
,
J.
Shin
,
D. S.
Gianola
, and
T. M.
Pollock
, “
Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy
,”
Acta Mater.
245
,
118618
(
2023
).
16.
Y.
Zhou
,
S.
Zeng
,
Y.
Zhu
,
H.
Li
,
H.
Zhang
,
H.
Zhang
, and
Z.
Zhu
, “
Superior tensile properties of a novel as-cast non-equimolar Zr45Ti15Nb20Ta20 complex concentrated alloy
,”
Mater. Lett.
324
,
132779
(
2022
).
17.
L.
Lilensten
,
J. P.
Couzinié
,
J.
Bourgon
,
L.
Perrière
,
G.
Dirras
,
F.
Prima
, and
I.
Guillot
, “
Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity
,”
Mater. Res. Lett.
5
,
110
116
(
2017
).
18.
N. D.
Stepanov
,
N. Y.
Yurchenko
,
S. V.
Zherebtsov
,
M. A.
Tikhonovsky
, and
G. A.
Salishchev
, “
Aging behavior of the HfNbTaTiZr high entropy alloy
,”
Mater. Lett.
211
,
87
90
(
2018
).
19.
H. Y.
Yasuda
,
Y.
Yamada
,
K.
Cho
, and
T.
Nagase
, “
Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals
,”
Mater. Sci. Eng., A
809
,
140983
(
2021
).
20.
S. Y.
Chen
,
Y.
Tong
,
K. K.
Tseng
,
J. W.
Yeh
,
J. D.
Poplawsky
,
J. G.
Wen
,
M. C.
Gao
,
G.
Kim
,
W.
Chen
,
Y.
Ren
,
R.
Feng
,
W. D.
Li
, and
P. K.
Liaw
, “
Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
,”
Scr. Mater.
158
,
50
56
(
2019
).
21.
T.
Li
,
J.
Miao
,
Y.
Lu
,
T.
Wang
, and
T.
Li
, “
Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys
,”
Int. J. Refract. Met. Hard Mater.
103
,
105762
(
2022
).
22.
Y.
Xiao
,
X.
Chang
, and
X.
Peng
, “
Achieving a balance between mechanical properties at room and elevated temperatures of lightweight NiAlFeCrMoV high-entropy alloy
,”
Int. J. Refract. Met. Hard Mater.
114
,
106243
(
2023
).
23.
S.
Zeng
,
Y.
Zhou
,
H.
Li
,
H.
Zhang
,
H.
Zhang
, and
Z.
Zhu
, “
Microstructure and mechanical properties of lightweight Ti3Zr1.5NbVAlx (x = 0, 0.25, 0.5 and 0.75) refractory complex concentrated alloys
,”
J. Mater. Sci. Technol.
130
,
64
74
(
2022
).
24.
Y.
Xiao
and
X.
Peng
, “
Design of lightweight Ti3Zr1.5NbVx refractory high-entropy alloys with superior mechanical properties
,”
J. Mater. Res. Technol.
27
,
330
341
(
2023
).
25.
T. D.
Huang
,
S. Y.
Wu
,
H.
Jiang
,
Y. P.
Lu
,
T. M.
Wang
, and
T. J.
Li
, “
Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys
,”
Int. J. Miner. Metall. Mater.
27
,
1318
1325
(
2020
).
26.
Z.
Li
,
W.
Lai
,
X.
Tong
,
D.
You
,
W.
Li
, and
X.
Wang
, “
Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance
,”
Mater. Sci. Eng., A
845
,
143203
(
2022
).
27.
Y. D.
Wu
,
Y. H.
Cai
,
T.
Wang
,
J. J.
Si
,
J.
Zhu
,
Y. D.
Wang
, and
X. D.
Hui
, “
A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties
,”
Mater. Lett.
130
,
277
280
(
2014
).
28.
W.
Dou
,
Z.
Xu
,
Y.
Han
, and
F.
Huang
, “
A ductile fracture model incorporating stress state effect
,”
Int. J. Mech. Sci.
241
,
107965
(
2023
).
29.
A.
Hilhorst
,
J.
Leclerc
,
T.
Pardoen
,
P. J.
Jacques
,
L.
Noels
, and
V. D.
Nguyen
, “
Ductile fracture of high entropy alloys: From the design of an experimental campaign to the development of a micromechanics-based modeling framework
,”
Eng. Fract. Mech.
275
,
108844
(
2022
).
30.
B.
Gludovatz
,
A.
Hohenwarter
,
K. V. S.
Thurston
,
H.
Bei
,
Z.
Wu
,
E. P.
George
, and
R. O.
Ritchie
, “
Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
,”
Nat. Commun.
7
,
10602
(
2016
).
31.
A. R.
Cui
,
S. C.
Hu
,
S.
Zhang
,
J. C.
Cheng
,
Q.
Li
,
J. Y.
Huang
, and
S. N.
Luo
, “
Spall response of medium-entropy alloy CrCoNi under plate impact
,”
Int. J. Mech. Sci.
252
,
108331
(
2023
).
32.
M. Z.
Zhang
,
K.
Zhang
,
K. K.
Song
,
X. Y.
Zou
,
W. D.
Song
,
K. F.
Li
,
L. N.
Hu
,
Z. Q.
Zhang
, and
J.
Eckert
, “
Enhanced mechanical performance of gradient-structured CoCrFeMnNi high-entropy alloys induced by industrial shot-blasting
,”
Rare Met.
42
,
982
993
(
2023
).
33.
Y.
Zhao
,
Z.
Chen
,
K.
Yan
,
W.
Le
,
S.
Naseem
,
H.
Zhang
, and
L.
Yang
, “
Investigation on microstructure, superior tensile property and its mechanism in Al0.3CoCrFeNi high-entropy alloy via thermo-mechanical processing
,”
Mater. Sci. Eng., A
866
,
144690
(
2023
).
34.
B. X.
Cao
,
D. X.
Wei
,
X. F.
Zhang
,
H. J.
Kong
,
Y. L.
Zhao
,
J. X.
Hou
,
J. H.
Luan
,
Z. B.
Jiao
,
Y.
Liu
,
T.
Yang
, and
C. T.
Liu
, “
Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: The role of heterogeneous strain distribution and environmentally assisted intergranular damage
,”
Mater. Today Phys.
24
,
100653
(
2022
).
35.
B. X.
Cao
,
H. J.
Kong
,
Z. Y.
Ding
,
S. W.
Wu
,
J. H.
Luan
,
Z. B.
Jiao
,
J.
Lu
,
C. T.
Liu
, and
T.
Yang
, “
A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ′-solvus temperature and superior high-temperature strength
,”
Scr. Mater.
199
,
113826
(
2021
).
36.
P.
Kumar
,
S. J.
Kim
,
Q.
Yu
,
J.
Ell
,
M.
Zhang
,
Y.
Yang
,
J. Y.
Kim
,
H. K.
Park
,
A. M.
Minor
,
E. S.
Park
, and
R. O.
Ritchie
, “
Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0.5Nb1.25Ta1.25TiZr at temperatures from ambient to 1200 °C
,”
Acta Mater.
245
,
118620
(
2023
).
37.
S.
Wolff-Goodrich
,
S.
Haas
,
U.
Glatzel
, and
C. H.
Liebscher
, “
Towards superior high temperature properties in low density ferritic AlCrFeNiTi compositionally complex alloys
,”
Acta Mater.
216
,
117113
(
2021
).
38.
S.
Zhou
,
P. K.
Liaw
,
Y.
Xue
, and
Y.
Zhang
, “
Temperature-dependent mechanical behavior of an Al0.5Cr0.9FeNi2.5V0.2 high-entropy alloy
,”
Appl. Phys. Lett.
119
,
121902
(
2021
).
39.
W.
Lai
,
H.
Liu
,
X.
Yu
,
Y.
Yi
,
W.
Li
,
S.
Zhou
,
S.
Cui
, and
X.
Wang
, “
A design of TiZr-rich body-centered cubic structured multi-principal element alloys with outstanding tensile strength and ductility
,”
Mater. Sci. Eng., A
813
,
141135
(
2021
).
40.
Z.
Lei
,
X.
Liu
,
Y.
Wu
,
H.
Wang
,
S.
Jiang
,
S.
Wang
,
X.
Hui
,
Y.
Wu
,
B.
Gault
,
P.
Kontis
,
D.
Raabe
,
L.
Gu
,
Q.
Zhang
,
H.
Chen
,
H.
Wang
,
J.
Liu
,
K.
An
,
Q.
Zeng
,
T. G.
Nieh
, and
Z.
Lu
, “
Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
,”
Nature
563
,
546
550
(
2018
).
41.
W.
Huang
,
J.
Hou
,
X.
Wang
,
J.
Qiao
, and
Y.
Wu
, “
Excellent room-temperature tensile ductility in as-cast Ti37V15Nb22Hf23W3 refractory high entropy alloys
,”
Intermetallics
151
,
107735
(
2022
).
42.
T.
Li
,
S.
Wang
,
W.
Fan
,
Y.
Lu
,
T.
Wang
,
T.
Li
, and
P. K.
Liaw
, “
CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy
,”
Acta Mater.
246
,
118728
(
2023
).
43.
J.
Wang
,
S.
Bai
,
Y.
Tang
,
S.
Li
,
X.
Liu
,
J.
Jia
,
Y.
Ye
, and
L.
Zhu
, “
Effect of the valence electron concentration on the yield strength of Ti–Zr–Nb–V high-entropy alloys
,”
J. Alloys Compd.
868
,
159190
(
2021
).
44.
Y.
Chen
,
Z.
Xu
,
M.
Wang
,
Y.
Li
,
C.
Wu
, and
Y.
Yang
, “
A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties
,”
Mater. Sci. Eng., A
792
,
139774
(
2020
).
45.
V. T.
Nguyen
,
M.
Qian
,
Z.
Shi
,
T.
Song
,
L.
Huang
, and
J.
Zou
, “
Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach
,”
Mater. Sci. Eng., A
742
,
762
772
(
2019
).
46.
M.
Akmal
,
H. W.
Seong
, and
H. J.
Ryu
, “
Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off
,”
J. Mater. Sci. Technol.
109
,
176
185
(
2022
).
47.
R.
Wang
,
Y.
Tang
,
Z.
Lei
,
Y.
Ai
,
Z.
Tong
,
S.
Li
,
Y.
Ye
, and
S.
Bai
, “
Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys
,”
Mater. Des.
213
,
110356
(
2022
).
48.
T. H.
Chou
,
W. P.
Li
,
H. W.
Chang
,
B. X.
Cao
,
J. H.
Luan
,
J. C.
Huang
, and
T.
Yang
, “
Suppressing temperature-dependent embrittlement in high-strength medium-entropy alloy via hetero-grain/precipitation engineering
,”
Scr. Mater.
229
,
115377
(
2023
).
49.
Y.
Jia
,
G.
Wang
,
S.
Wu
,
Y.
Mu
,
Y.
Yi
,
Y.
Jia
,
P. K.
Liaw
,
T.
Zhang
, and
C. T.
Liu
, “
A lightweight refractory complex concentrated alloy with high strength and uniform ductility
,”
Appl. Mater. Today
27
,
101429
(
2022
).
50.
Y. L.
Zhao
,
T.
Yang
,
Y. R.
Li
,
L.
Fan
,
B.
Han
,
Z. B.
Jiao
,
D.
Chen
,
C. T.
Liu
, and
J. J.
Kai
, “
Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy
,”
Acta Mater.
188
,
517
527
(
2020
).
51.
H. M.
Daoud
,
A. M.
Manzoni
,
N.
Wanderka
, and
U.
Glatzel
, “
High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy)
,”
Jom
67
,
2271
2277
(
2015
).
52.
Y.
Palguna
,
S.
Kotla
, and
R.
Korla
, “
High temperature deformation behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy: Dynamic strain ageing
,”
J. Alloys Compd.
930
,
167422
(
2023
).
53.
F.
Otto
,
A.
Dlouhý
,
C.
Somsen
,
H.
Bei
,
G.
Eggeler
, and
E. P.
George
, “
The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
,”
Acta Mater.
61
,
5743
5755
(
2013
).
54.
J.
Pang
,
H.
Zhang
,
L.
Zhang
,
Z.
Zhu
,
H.
Fu
,
H.
Li
,
A.
Wang
,
Z.
Li
, and
H.
Zhang
, “
A ductile Nb40Ti25Al15V10Ta5Hf3W2 refractory high entropy alloy with high specific strength for high-temperature applications
,”
Mater. Sci. Eng., A
831
,
142290
(
2022
).
55.
N.
Ahmad
,
R.
Ghiaasiaan
,
P. R.
Gradl
,
S.
Shao
, and
N.
Shamsaei
, “
Revealing deformation mechanisms in additively manufactured Alloy 718: Cryogenic to elevated temperatures
,”
Mater. Sci. Eng., A
849
,
143528
(
2022
).
56.
C.
Zhang
,
Q.
Yu
,
Y. T.
Tang
,
M.
Xu
,
H.
Wang
,
C.
Zhu
,
J.
Ell
,
S.
Zhao
,
B. E.
MacDonald
,
P.
Cao
,
J. M.
Schoenung
,
K. S.
Vecchio
,
R. C.
Reed
,
R. O.
Ritchie
, and
E. J.
Lavernia
, “
Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications
,”
Acta Mater.
242
,
118449
(
2023
).
57.
Y. X.
Li
,
R. K.
Nutor
,
Q. K.
Zhao
,
X. P.
Zhang
,
Q. P.
Cao
,
S. S.
Sohn
,
X. D.
Wang
,
S. Q.
Ding
,
D. X.
Zhang
,
H. F.
Zhou
,
J. W.
Wang
, and
J. Z.
Jiang
, “
Unraveling the deformation behavior of the Fe45Co25Ni10V20 high entropy alloy
,”
Int. J. Plast.
165
,
103619
(
2023
).
58.
D.
Cui
,
Z.
Yang
,
B.
Guo
,
L.
Liu
,
Z.
Wang
,
J.
Li
,
J.
Wang
, and
F.
He
, “
Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy
,”
Intermetallics
151
,
107727
(
2022
).
59.
Y.
Zhou
,
S.
Zeng
,
H.
Li
,
H.
Zhang
,
H.
Zhang
, and
Z.
Zhu
, “
A design of Zr-rich body-centered cubic structured refractory complex concentrated alloy with outstanding tensile strength and ductility
,”
Mater. Sci. Eng., A
874
,
145091
(
2023
).
You do not currently have access to this content.