Thin (  100 nm thick) hydrophobic polymer films are used in a plethora of applications where water repellency is required. However, hydrophobic film implementation in industry is limited due to poor durability. Thin hydrophobic film blistering during condensation has been identified as one of the main mechanisms associated with failure. Yet, disagreement exists about the source of blister initiation. Furthermore, there is a lack of understanding about the physical defects or pinholes that facilitate vapor penetration pathways through thin hydrophobic films. These pinholes govern the nucleation of blisters on the interface between the hydrophobic polymer and metal substrate. Here, we use metal electrodeposition as a means to characterize these intrinsic pinholes in thin hydrophobic polymers. A facile method is demonstrated to locate pinholes and measure pinhole density on CFx and poly(2-chloro-p-xylylene) (Parylene C) films. Our work not only helps to understand the intrinsic defects associated with film deposition, it also provides design guidelines for the selection and development of efficient thin film hydrophobic coatings.

1.
H.
Yuan
,
Y.
Wang
,
T.
Li
,
Y.
Wang
,
P.
Ma
,
H.
Zhang
,
W.
Yang
,
M.
Chen
, and
W.
Dong
, “
Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network
,”
Nanoscale
11
(
23
),
11360
11368
(
2019
).
2.
W.
Gao
,
M.
Bie
,
Y.
Quan
,
J.
Zhu
, and
W.
Zhang
, “
Self-healing, reprocessing and sealing abilities of polysulfide-based polyurethane
,”
Polymer
151
,
27
33
(
2018
).
3.
R.
Vidu
and
P.
Stroeve
, “
Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4
,”
Ind. Eng. Chem. Res.
43
(
13
),
3314
3324
(
2004
).
4.
J.
Tao
,
R.
Wang
,
H.
Yu
,
L.
Chen
,
D.
Fang
,
Y.
Tian
,
J.
Xie
,
D.
Jia
,
H.
Liu
,
J.
Wang
,
F.
Tang
,
L.
Song
, and
H.
Li
, “
Highly transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices
,”
ACS Appl. Mater. Interfaces
12
(
8
),
9701
9709
(
2020
).
5.
F.
Villani
,
P.
Vacca
,
G.
Nenna
,
O.
Valentino
,
G.
Burrasca
,
T.
Fasolino
,
C.
Minarini
, and
D.
della Sala
, “
Inkjet printed polymer layer on flexible substrate for OLED applications
,”
J. Phys. Chem. C
113
(
30
),
13398
13402
(
2009
).
6.
H.
Murata
,
B.-J.
Chang
,
O.
Prucker
,
M.
Dahm
, and
J.
Rühe
, “
Polymeric coatings for biomedical devices
,”
Surf. Sci.
570
(
1
),
111
118
(
2004
).
7.
Y.
Kim
,
J. S.
Kim
,
D. H.
Shin
,
J. H.
Seo
,
S. M.
You
, and
J.
Lee
, “
Effects of hydrophobic and superhydrophobic coatings of a condenser on the thermal performance of a two-phase closed thermosyphon
,”
Int. J. Heat Mass Transfer
144
,
118706
(
2019
).
8.
K.
Fazle Rabbi
,
J. Y.
Ho
,
X.
Yan
,
J.
Ma
,
M. J.
Hoque
,
S.
Sett
, and
N.
Miljkovic
, “
Polydimethylsiloxane-silane synergy enables dropwise condensation of low surface tension liquids
,”
Adv. Funct. Mater.
32
(
19
),
2112837
(
2022
).
9.
B.
El Fil
,
G.
Kini
, and
S.
Garimella
, “
A review of dropwise condensation: Theory, modeling, experiments, and applications
,”
Int. J. Heat Mass Transfer
160
,
120172
(
2020
).
10.
H. J.
Cho
,
D. J.
Preston
,
Y.
Zhu
, and
E. N.
Wang
, “
Nanoengineered materials for liquid–vapour phase-change heat transfer
,”
Nat. Rev. Mater.
2
(
2
),
16092
(
2016
).
11.
R.
Enright
,
N.
Miljkovic
,
J. L.
Alvarado
,
K.
Kim
, and
J. W.
Rose
, “
Dropwise condensation on micro- and nanostructured surfaces
,”
Nanoscale Microscale Thermophys. Eng.
18
(
3
),
223
250
(
2014
).
12.
E.
Le Fevre
and
J.
Rose
, “
Heat-transfer measurements during dropwise condensation of steam
,”
Int. J. Heat Mass Transfer
7
(
2
),
272
273
(
1964
).
13.
P.
Marto
,
D.
Looney
,
J.
Rose
, and
A.
Wanniarachchi
, “
Evaluation of organic coatings for the promotion of dropwise condensation of steam
,”
Int. J. Heat Mass Transfer
29
(
8
),
1109
1117
(
1986
).
14.
K. M.
Holden
,
A. S.
Wanniarachchi
,
P. J.
Marto
,
D. H.
Boone
, and
J. W.
Rose
, “
The use of organic coatings to promote dropwise condensation of steam
,”
J. Heat Transfer
109
(
3
),
768
774
(
1987
).
15.
G.
Reiter
, “
Dewetting of thin polymer films
,”
Phys. Rev. Lett.
68
(
1
),
75
(
1992
).
16.
R.
Mukherjee
,
S.
Das
,
A.
Das
,
S. K.
Sharma
,
A. K.
Raychaudhuri
, and
A.
Sharma
, “
Stability and dewetting of metal nanoparticle filled thin polymer films: Control of instability length scale and dynamics
,”
ACS Nano
4
(
7
),
3709
3724
(
2010
).
17.
R. P.
Berkelaar
,
P.
Bampoulis
,
E.
Dietrich
,
H. P.
Jansen
,
X.
Zhang
,
E. S.
Kooij
,
D.
Lohse
, and
H. J. W.
Zandvliet
, “
Water-induced blister formation in a thin film polymer
,”
Langmuir
31
(
3
),
1017
1025
(
2015
).
18.
J.
Ma
,
H.
Cha
,
M.-K.
Kim
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced delamination of nanoscale hydrophobic films
,”
Adv. Funct. Mater.
29
(
43
),
1905222
(
2019
).
19.
E. A.
Jagla
, “
Modeling the buckling and delamination of thin films
,”
Phys. Rev. B
75
(
8
),
085405
(
2007
).
20.
E.
Bonaccurso
,
H.-J.
Butt
,
V.
Franz
,
K.
Graf
,
M.
Kappl
,
S.
Loi
,
B.
Niesenhaus
,
S.
Chemnitz
,
M.
Böhm
, and
B.
Petrova
, “
Water induced dewetting of ultrathin polystyrene films on hydrophilic surfaces
,”
Langmuir
18
(
21
),
8056
8061
(
2002
).
21.
J. R.
Seddon
and
D.
Lohse
, “
Nanobubbles and micropancakes: Gaseous domains on immersed substrates
,”
J. Phys.: Condens. Matter
23
(
13
),
133001
(
2011
).
22.
J. M.
Pommersheim
,
P.
Campbell
, and
M. E.
McKnight
, “
Mathematical models for the corrosion protective performance of organic coatings
,” Technical Note 1150, National Bureau of Standards, Gaithersburg, MD (1982).
23.
M.
Doherty
and
J.
Sykes
, “
A quantitative study of blister growth on lacquered food cans by scanning acoustic microscopy
,”
Corros. Sci.
50
(
10
),
2755
2772
(
2008
).
24.
M.
Nazir
,
Z. A.
Khan
, and
K.
Stokes
, “
A unified mathematical modelling and simulation for cathodic blistering mechanism incorporating diffusion and fracture mechanics concepts
,”
J. Adhes. Sci. Technol.
29
(
12
),
1200
1228
(
2015
).
25.
X.
Xie
,
J. M.
Dennison
,
J.
Shin
,
Z.
Diao
, and
D. G.
Cahill
, “
Measurement of water vapor diffusion in nanoscale polymer films by frequency-domain probe beam deflection
,”
Rev. Sci. Instrum.
89
(
10
),
104904
(
2018
).
26.
J.
Ma
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films
,”
Nano Lett.
20
(
5
),
3918
3924
(
2020
).
27.
Y.
Zhang
,
J. A.
Bertrand
,
R.
Yang
,
S. M.
George
, and
Y. C.
Lee
, “
Electroplating to visualize defects in Al2O3 thin films grown using atomic layer deposition
,”
Thin Solid Films
517
(
11
),
3269
3272
(
2009
).
28.
Y.
Zhang
,
D.
Seghete
,
A.
Abdulagatov
,
Z.
Gibbs
,
A.
Cavanagh
,
R.
Yang
,
S.
George
, and
Y.-C.
Lee
, “
Investigation of the defect density in ultra-thin Al2O3 films grown using atomic layer deposition
,”
Surf. Coat. Technol.
205
(
10
),
3334
3339
(
2011
).
29.
A.
Mallikarjunan
,
C.
Wiegand
,
J. J.
Senkevich
,
G.-R.
Yang
,
E.
Williams
, and
T.-M.
Lu
, “
Hindered copper ion penetration in Parylene-N films
,”
Electrochem. Solid-State Lett.
6
(
8
),
F28
(
2003
).
30.
A.
Radisic
,
P. M.
Vereecken
,
P. C.
Searson
, and
F. M.
Ross
, “
The morphology and nucleation kinetics of copper islands during electrodeposition
,”
Surf. Sci.
600
(
9
),
1817
1826
(
2006
).
31.
N. D.
Nikolić
,
K. I.
Popov
,
L. J.
Pavlović
, and
M. G.
Pavlović
, “
Morphologies of copper deposits obtained by the electrodeposition at high overpotentials
,”
Surf. Coat. Technol.
201
(
3
),
560
566
(
2006
).
32.
A.
Khlyustova
,
Y.
Cheng
, and
R.
Yang
, “
Vapor-deposited functional polymer thin films in biological applications
,”
J. Mater. Chem. B
8
(
31
),
6588
6609
(
2020
).
33.
A. S.
Mitko
,
D. R.
Streltsov
,
P. V.
Dmitryakov
,
A. A.
Nesmelov
,
A. I.
Buzin
, and
S. N.
Chvalun
, “
Evolution of morphology in the process of growth of island poly(p-xylylene) films obtained by vapor deposition polymerization
,”
Polym. Sci., Ser. A
61
(
5
),
555
564
(
2019
).
34.
L. A.
Errede
,
R. S.
Gregorian
, and
J. M.
Hoyt
, “
The chemistry of xylylenes. VI. The polymerization of p-xylylene2
,”
J. Am. Chem. Soc.
82
(
19
),
5218
5223
(
1960
).
35.
Y.
Li
,
W.-Z.
Jia
,
Y.-Y.
Song
, and
X.-H.
Xia
, “
Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template
,”
Chem. Mater.
19
(
23
),
5758
5764
(
2007
).
36.
M. J.
Hoque
,
L.
Li
,
J.
Ma
,
H.
Cha
,
S.
Sett
,
X.
Yan
,
K. F.
Rabbi
,
J. Y.
Ho
,
S.
Khodakarami
,
J.
Suwala
,
W.
Yang
,
O.
Mohammadmoradi
,
G. O.
Ince
, and
N.
Miljkovic
, “
Ultra-resilient multi-layer fluorinated diamond like carbon hydrophobic surfaces
,”
Nat. Commun.
14
(
1
),
4902
(
2023
).
37.
J.
Ma
,
Z.
Zheng
,
M. J.
Hoque
,
L.
Li
,
K. F.
Rabbi
,
J. Y.
Ho
,
P. V.
Braun
,
P.
Wang
, and
N.
Miljkovic
, “
A lipid-inspired highly adhesive interface for durable superhydrophobicity in wet environments and stable jumping droplet condensation
,”
ACS Nano
16
(
3
),
4251
4262
(
2022
).

Supplementary Material

You do not currently have access to this content.