Elastomeric elastocaloric regenerators have great potential for use in low-stress elastocaloric cooling devices. However, these regenerators display an asymmetric fluid exchange when operating in an active elastocaloric cooling cycle, due to the large required strains and associated volume change. During strain, the fluid volume increases, which passively forces fluid flow into the regenerator; when the strain is released, the fluid volume decreases, which results in a fluid flow out of the regenerator. During a traditional elastocaloric cooling cycle, there are also active fluid flow periods provided by fluid displacers or pumps. Here, we study the passive fluid flow in high-strain regenerators using a numerical model and experiments in two types of regenerators. Hyperelastic models are used to fit the experimentally measured mechanical behavior of thermoplastic polyurethane elastocaloric elastomers, and the model is subsequently used to conduct finite-element simulations predicting regenerator volume changes for an applied strain of 200%–600%. We validated the results using a specifically designed setup for measuring volume changes using pressure differences on a parallel-plate regenerator. For a strain range of 200%–600%, the predicted volume change ratio is 69.5%, closely matching the experimental value of 66.7%. We observed that the middle region of the regenerator experiences a higher volume change, which can be accurately accounted by the numerical model.

1.
M. O.
McLinden
,
J. S.
Brown
,
R.
Brignoli
,
A. F.
Kazakov
, and
P. A.
Domanski
,
Nat. Commun.
8
,
14476
(
2017
).
2.
N.
Abas
,
A. R.
Kalair
,
N.
Khan
,
A.
Haider
,
Z.
Saleem
, and
M. S.
Saleem
,
Renewable Sustainable Energy Rev.
90
,
557
569
(
2018
).
3.
United Nations
,
Handbook for the Montreal Protocol on Substances That Deplete the Ozone Layer
, 14th ed. (
Ozone Secretariat
,
2020
).
4.
V. K.
Pecharsky
and
K. A.
Gschneidner
, Jr.
,
Phys. Rev. Lett.
78
,
4494
4497
(
1997
).
5.
O.
Tegus
,
E.
Brück
,
K.
Buschow
, and
F.
De Boer
,
Nature
415
,
150
152
(
2002
).
6.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
,
Nat. Mater.
11
,
620
626
(
2012
).
7.
B.
Neese
,
B.
Chu
,
S.-G.
Lu
,
Y.
Wang
,
E.
Furman
, and
Q.
Zhang
,
Science
321
,
821
823
(
2008
).
8.
P.
Bai
,
Q.
Zhang
,
H.
Cui
,
Y.
Bo
,
D.
Zhang
,
W.
He
,
Y.
Chen
, and
R.
Ma
,
Adv. Mater.
35
,
2209181
(
2023
).
9.
E.
Bonnot
,
R.
Romero
,
L.
Mañosa
,
E.
Vives
, and
A.
Planes
,
Phys. Rev. Lett.
100
,
125901
(
2008
).
10.
D.
Cong
,
W.
Xiong
,
A.
Planes
,
Y.
Ren
,
L.
Mañosa
,
P.
Cao
,
Z.
Nie
,
X.
Sun
,
Z.
Yang
,
X.
Hong
et al,
Phys. Rev. Lett.
122
,
255703
(
2019
).
11.
J.
Tušek,
,
A.
Žerovnik
,
M.
Čebron
,
M.
Brojan
,
B.
Žužek
,
K.
Engelbrecht
, and
A.
Cadelli
,
Acta Mater.
150
,
295
307
(
2018
).
12.
S.
Qian
,
D.
Catalini
,
J.
Muehlbauer
,
B.
Liu
,
H.
Mevada
,
H.
Hou
,
Y.
Hwang
,
R.
Radermacher
, and
I.
Takeuchi
,
Science
380
,
722
727
(
2023
).
13.
B.
Li
,
Y.
Kawakita
,
S.
Ohira-Kawamura
,
T.
Sugahara
,
H.
Wang
,
J.
Wang
,
Y.
Chen
,
S. I.
Kawaguchi
,
S.
Kawaguchi
,
K.
Ohara
et al,
Nature
567
,
506
510
(
2019
).
14.
D.
Matsunami
,
A.
Fujita
,
K.
Takenaka
, and
M.
Kano
,
Nat. Mater.
14
,
73
78
(
2015
).
15.
X.
Moya
,
S.
Kar-Narayan
, and
N. D.
Mathur
,
Nat. Mater.
13
,
439
450
(
2014
).
16.
H.
Hou
,
S.
Qian
, and
I.
Takeuchi
,
Nat. Rev. Mater.
7
,
633
652
(
2022
).
17.
U.S. Department of Energy
. “
Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies
,” Technical Report (
2014
).
18.
D.
Guyomar
,
Y.
Li
,
G.
Sebald
,
P.-J.
Cottinet
,
B.
Ducharne
, and
J.-F.
Capsal
,
Appl. Therm. Eng.
57
,
33
38
(
2013
).
19.
Z.
Xie
,
G.
Sebald
, and
D.
Guyomar
,
Appl. Phys. Lett.
107
,
081905
(
2015
).
20.
F.
Greibich
,
R.
Schwödiauer
,
G.
Mao
,
D.
Wirthl
,
M.
Drack
,
R.
Baumgartner
,
A.
Kogler
,
J.
Stadlbauer
,
S.
Bauer
,
N.
Arnold
et al,
Nat. Energy
6
,
260
267
(
2021
).
21.
S.
Zhang
,
Q.
Yang
,
C.
Li
,
Y.
Fu
,
H.
Zhang
,
Z.
Ye
,
X.
Zhou
,
Q.
Li
,
T.
Wang
,
S.
Wang
et al,
Nat. Commun.
13
,
9
(
2022
).
22.
K.
Wang
,
K.
Engelbrecht
, and
C. R.
Bahl
,
Appl. Mater. Today
30
,
101711
(
2023
).
23.
L.
Porenta
,
P.
Kabirifar
,
A.
Žerovnik
,
M.
Čebron
,
B.
Žužek
,
M.
Dolenec
,
M.
Brojan
, and
J.
Tušek
,
Appl. Mater. Today
20
,
100712
(
2020
).
24.
G.
Sebald
,
G.
Lombardi
,
G.
Coativy
,
J.
Jay
,
L.
Lebrun
, and
A.
Komiya
,
Appl. Therm. Eng.
223
,
120016
(
2023
).
25.
K. K.
Nielsen
,
J.
Tusek
,
K.
Engelbrecht
,
S.
Schopfer
,
A.
Kitanovski
,
C. R. H.
Bahl
,
A.
Smith
,
N.
Pryds
, and
A.
Poredos
,
Int. J. Refrig.
34
,
603
616
(
2011
).
26.
S.
Qian
,
J.
Yu
, and
G.
Yan
,
Renewable Sustainable Energy Rev.
69
,
535
550
(
2017
).
27.
A.
Kitanovski
,
U.
Plaznik
,
U.
Tomc
, and
A.
Poredoš
,
Int. J. Refrig.
57
,
288
298
(
2015
).
28.
J.
Liang
,
K.
Engelbrecht
,
K. K.
Nielsen
,
K.
Loewe
,
H.
Vieyra
,
A.
Barcza
, and
C. R.
Bahl
,
Appl. Therm. Eng.
186
,
116519
(
2021
).
29.
K.
Navickaitė
,
J.
Liang
,
C.
Bahl
,
S.
Wieland
,
T.
Buchenau
, and
K.
Engelbrecht
,
Appl. Therm. Eng.
174
,
115297
(
2020
).
30.
Y.
Zhu
,
J.
Hur
,
S.
Cheng
,
Q.
Sun
,
W.
Li
, and
S.
Yao
,
Int. J. Heat Mass Transfer
176
,
121372
(
2021
).
31.
H.
Hou
,
E.
Simsek
,
T.
Ma
,
N. S.
Johnson
,
S.
Qian
,
C.
Cissé
,
D.
Stasak
,
N.
Al Hasan
,
L.
Zhou
,
Y.
Hwang
et al,
Science
366
,
1116
1121
(
2019
).
32.
N.
Candau
,
C.
Pradille
,
J.-L.
Bouvard
, and
N.
Billon
,
Polym. Test.
56
,
314
320
(
2016
).
33.
H. J.
Qi
and
M. C.
Boyce
,
Mech. Mater.
37
,
817
839
(
2005
).
34.
C.
Prisacariu
,
Polyurethane Elastomers: From Morphology to Mechanical Aspects
(
Springer Science & Business Media
,
2011
).
35.
R. S.
Rivlin
and
D.
Saunders
,
Philos. Trans. R. Soc., A
243
,
251
288
(
1951
).
36.
D.
Haines
and
W.
Wilson
,
J. Mech. Phys. Solids
27
,
345
360
(
1979
).
37.
Y.
Wang
,
W.
Luo
,
J.
Huang
,
C.
Peng
,
H.
Wang
,
C.
Yuan
,
G.
Chen
,
B.
Zeng
, and
L.
Dai
,
Macromol. Theory Simul.
29
,
2000009
(
2020
).
38.
K.
Upadhyay
,
G.
Subhash
, and
D.
Spearot
,
J. Mech. Phys. Solids
124
,
115
142
(
2019
).
39.
M.
Pelliciari
,
S.
Sirotti
, and
A. M.
Tarantino
,
J. Mech. Phys. Solids
176
,
105308
(
2023
).
40.
M. F.
Beatty
and
D. O.
Stalnaker
,
J. Appl. Mech.
53
,
807
813
(
1986
).
41.
R. S.
Rivlin
,
Philos. Trans. R. Soc., A
241
,
379
397
(
1948
).
42.
R. W.
Ogden
,
Non-Linear Elastic Deformations
(
Courier Corporation
,
1997
).
43.
J. C.
Simo
and
T. J.
Hughes
,
Computational Inelasticity
(
Springer Science & Business Media
,
2006
), Vol.
7
.
44.
45.
J. S.
Bergström
and
M.
Boyce
,
J. Mech. Phys. Solids
46
,
931
954
(
1998
).
46.
J.
Tušek
,
K.
Engelbrecht
,
D.
Eriksen
,
S.
Dall'Olio
,
J.
Tušek
, and
N.
Pryds
,
Nat. Energy
1
,
16134
(
2016
).
47.
J.
Tušek
,
K.
Engelbrecht
,
R.
Millán-Solsona
,
L.
Manosa
,
E.
Vives
,
L. P.
Mikkelsen
, and
N.
Pryds
,
Adv. Energy Mater.
5
,
1500361
(
2015
).
48.
K.
Wang
,
J. T. B.
Overvelde
,
K.
Engelbrecht
,
R.
Bjørk
, and
C. R. H.
Bahl
(
2023
), “Data set for ‘Volume compensation of large-deformation 3D-printed soft elastomeric elastocaloric regenerators,’”
data.dtu.dk
. https://doi.org/10.11583/DTU.23695065

Supplementary Material

You do not currently have access to this content.