Oxygen vacancies are equilibrium defects in the vanadium pentoxide system that give rise to polaronic hopping transport via V4+ charge compensating defect. In this paper, we report the tunability of polaron formation, the hopping process, and their magnetic signature by substitution of isovalent (5+) phosphorus ions in the V5+ site. The powder x-ray diffraction data show a monotonous shift in lattice parameters with progressive P-doping, confirming the presence of a substitutional dopant. The polaron hopping energy reduced from 0.307 to 0.290 eV depicting a lower defect concentration in P-doping in V2O5. At low temperatures, it is found to obey the Efros–Shklovskii variable range hopping mechanism. The estimated hopping range increased to 1.6 ± 0.1 nm in doped V2O5 in contrast to ∼1.3 nm in the undoped one. The electron spin resonance measurements show a diminishing broad ferromagnetic signal and rising paramagnetic signal (g = 1.97) with progressive P-doping depicting predominant isolated electronic spins in the doped sample. The same is corroborated in room temperature M–H with a distinct hysteresis that diminishes with P-doping and a rise of a paramagnetic slope. Moreover, the reduced oxygen defects and lower V4+ relative occupancy together with fermi level fall toward intrinsic position are substantiated by photoelectron emission studies.

1.
L.
Ngamwongwan
,
I.
Fongkaew
,
S.
Jungthawan
,
P.
Hirunsit
,
S.
Limpijumnong
, and
S.
Suthirakun
,
Phys. Chem. Chem. Phys.
23
(
19
),
11374
11387
(
2021
).
2.
M.
Kang
,
J.
Jung
,
S.-Y.
Lee
,
J.-W.
Ryu
, and
S. W.
Kim
,
Thermochim. Acta
576
,
71
74
(
2014
).
3.
A.
Jovanović
,
A. S.
Dobrota
,
L. D.
Rafailović
,
S. V.
Mentus
,
I. A.
Pašti
,
B.
Johansson
, and
N. V.
Skorodumova
,
Phys. Chem. Chem. Phys.
20
(
20
),
13934
13943
(
2018
).
4.
D.
Su
and
G.
Wang
,
ACS Nano
7
(
12
),
11218
11226
(
2013
).
5.
M.
Kang
,
I.
Kim
,
S. W.
Kim
,
J.-W.
Ryu
, and
H. Y.
Park
,
Appl. Phys. Lett.
98
(
13
),
131907
(
2011
).
6.
H. Y.
Yu
,
B. H.
Kang
,
U. H.
Pi
,
C. W.
Park
,
S.-Y.
Choi
, and
G. T.
Kim
,
Appl. Phys. Lett.
86
(
25
),
253102
(
2005
).
7.
Q.
Wang
,
M.
Brier
,
S.
Joshi
,
A.
Puntambekar
, and
V.
Chakrapani
,
Phys. Rev. B
94
(
24
),
245305
(
2016
).
8.
R.
Alrammouz
,
M.
Lazerges
,
J.
Pironon
,
I.
Bin Taher
,
A.
Randi
,
Y.
Halfaya
, and
S.
Gautier
,
Sens. Actuators, A
332
,
113179
(
2021
).
9.
H.
Park
,
S.
Jeong
,
E.
Kim
,
S.
Shin
, and
H.
Shin
,
ACS Appl. Mater. Interfaces
14
(
37
),
42007
42017
(
2022
).
10.
K.
Schneider
,
J. Mater. Sci.
33
(
13
),
10410
10422
(
2022
).
11.
W.
Song
,
T.
Liu
,
L.
Yang
, and
J.
Jiang
,
Comput. Mater. Sci.
220
,
112071
(
2023
).
12.
S.
Zhang
,
G.
Feng
,
Z.
Bao
,
X.
Peng
,
C.
Jiang
,
Y.
Shao
,
S.
Wang
, and
J.
Wang
,
Ind. Eng. Chem. Res.
62
(
15
),
6113
6120
(
2023
).
13.
R. P.
Radhakrishnan
,
A. K.
Prasad
, and
S.
Dhara
,
IEEE Sens. J.
20
(
9
),
4555
4561
(
2020
).
14.
R.
Defrance
,
B.
Sklénard
,
M.
Guillaumont
,
J.
Li
, and
M.
Freyss
,
Solid-State Electron.
198
,
108455
(
2022
).
15.
S.
Iwanaga
,
M.
Marciniak
,
R. B.
Darling
, and
F. S.
Ohuchi
,
J. Appl. Phys.
101
(
12
),
123709
(
2007
).
16.
C.
Franchini
,
M.
Reticcioli
,
M.
Setvin
, and
U.
Diebold
,
Nat. Rev. Mater.
6
(
7
),
560
586
(
2021
).
17.
A.
Bhargava
,
R.
Eppstein
,
J.
Sun
,
M. A.
Smeaton
,
H.
Paik
,
L. F.
Kourkoutis
,
D. G.
Schlom
,
M.
Caspary Toroker
, and
R. D.
Robinson
,
Adv. Mater.
32
(
49
),
2004490
(
2020
).
18.
A.
Anson
,
D.
Mondal
,
V.
Biswas
,
K.
Urs MB
, and
V.
Kamble
,
J. Appl. Phys.
133
(
19
),
194505
(
2023
).
19.
D. O.
Scanlon
,
A.
Walsh
,
B. J.
Morgan
, and
G. W.
Watson
,
J. Phys. Chem. C
112
(
26
),
9903
9911
(
2008
).
20.
T.
Sarkar
,
S.
Biswas
,
S.
Kakkar
,
A. V.
Raghu
,
C.
Bera
, and
V. B.
Kamble
, arXiv:2106.10869 (
2021
).
21.
B. P.
Yalagala
,
P.
Sahatiya
,
C. S. R.
Kolli
,
S.
Khandelwal
,
V.
Mattela
, and
S.
Badhulika
,
ACS Appl. Nano Mater.
2
(
2
),
937
947
(
2019
).
22.
A. I.
Ivanov
,
A. K.
Gutakovskii
,
I. A.
Kotin
,
R. A.
Soots
, and
I. V.
Antonova
,
Adv. Electron. Mater.
5
(
10
),
1900310
(
2019
).
23.
J.-L.
Mi
,
K. M. Ø.
Jensen
,
C.
Tyrsted
,
M.
Bremholm
, and
B. B.
Iversen
,
CrystEngComm
17
(
36
),
6868
6877
(
2015
).
24.
V. B.
Kamble
,
S. V.
Bhat
, and
A. M.
Umarji
,
J. Appl. Phys.
113
(
24
),
244307
(
2013
).
25.
D. S.
Bhaskaram
and
G.
Govindaraj
,
J. Phys. Chem. C
127
(
1
),
550
561
(
2023
).
26.
G. N.
Greaves
,
J. Non-Cryst. Solids
11
(
5
),
427
446
(
1973
).
27.
D.
Emin
,
Phys. Today
35
(
6
),
34
40
(
1982
).
28.
N. F.
Mott
,
J. Non-Cryst. Solids
1
(
1
),
1
17
(
1968
).
29.
C.
Rao
,
V.
Bhide
, and
N.
Mott
,
Philos. Mag.
32
(
6
),
1277
1282
(
1975
).
30.
S. S. N.
Bharadwaja
,
C.
Venkatasubramanian
,
N.
Fieldhouse
,
S.
Ashok
,
M. W.
Horn
, and
T. N.
Jackson
,
Appl. Phys. Lett.
94
(
22
),
222110
(
2009
).
31.
A. L.
Efros
and
B. I.
Shklovskii
,
J. Phys. C
8
(
4
),
L49
(
1975
).
32.
A.
Malge
,
T.
Sankarapp
,
T.
Sujatha
,
J. S.
Ashwajeet
, and
G. B.
Devidas
,
Mater. TodayProc.
18
,
5340
5344
(
2019
).
33.
J. N.
Spencer
,
A.
Folli
,
H.
Ren
, and
D. M.
Murphy
,
J. Mater. Chem. A
9
(
31
),
16917
16927
(
2021
).
34.
E.
Gillis
and
E.
Boesman
,
Phys. Status Solidi B
14
(
2
),
337
347
(
1966
).
35.
D.
Ballutaud
,
C.
R'kha
,
C.
Sanchez
, and
J.
Livage
,
Phys. Status Solidi A
66
(
1
),
271
276
(
1981
).
36.
K. H.
Hsu
,
J. H.
Wu
,
Y. Y.
Huang
,
L. Y.
Wang
,
H. Y.
Lee
, and
J. G.
Lin
,
J. Appl. Phys.
97
(
11
),
114322
(
2005
).
37.
A. Z.
Moshfegh
and
A.
Ignatiev
,
Thin Solid Films
198
(
1
),
251
268
(
1991
).
38.
J.
Mendialdua
,
R.
Casanova
, and
Y.
Barbaux
,
J. Electron Spectrosc. Relat. Phenom.
71
(
3
),
249
261
(
1995
).

Supplementary Material

You do not currently have access to this content.