One approach to improving the output power of ultraviolet (UV-C) light-emitting diodes (LEDs) is to adopt an electron-blocking layer (EBL) with a high barrier. However, the intended effect may not be realized because of the composition pulling effect, which is the unintended occurrence of a gradient layer at an AlGaN/AlGaN hetero-interface with substantial differences in the Al composition. Here, we demonstrate that low-temperature growth (i.e., <1000 °C) can be used to control the unintentional gradient layer at an AlN/AlGaN hetero-interface between a barrier layer and AlN-EBL with a difference in Al compositions of more than 30%. LEDs with an emission wavelength of 265 nm were fabricated, and an AlN-EBL was grown at low temperature to realize an abrupt interface. At an applied current of 100 mA, growing the EBL under low-temperature conditions improved the forward voltage by 0.5 V and remarkably improved the peak luminous intensity by 1.4–1.6 times. Our results can be used to realize UV-C LEDs with a steep EBL and further improve their device characteristics.

1.
H.
Amano
,
R.
Collazo
,
C.
De Santi
,
S.
Einfeldt
,
M.
Funato
,
J.
Glaab
,
S.
Hagedorn
,
A.
Hirano
,
H.
Hirayama
,
R.
Ishii
,
Y.
Kashima
,
Y.
Kawakami
,
R.
Kirste
,
M.
Kneissl
,
R.
Martin
,
F.
Mehnke
,
M.
Meneghini
,
A.
Ougazzaden
,
P. J.
Parbrook
,
S.
Rajan
,
P.
Reddy
,
F.
Römer
,
J.
Ruschel
,
B.
Sarkar
,
F.
Scholz
,
L. J.
Schowalter
,
P.
Shields
,
Z.
Sitar
,
L.
Sulmoni
,
T.
Wang
,
T.
Wernicke
,
M.
Weyers
,
B.
Witzigmann
,
Y.-R.
Wu
,
T.
Wunderer
, and
Y.
Zhang
, “
The 2020 UV emitter roadmap
,”
J. Phys. D: Appl. Phys.
53
,
503001
(
2020
).
2.
M.
Raeiszadeh
and
B.
Adeli
, “
A critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations
,”
ACS Photonics
7
,
2941
(
2020
).
3.
S.
Ghosh
,
Y.
Chen
, and
J.
Hu
, “
Application of UVC and UVC based advanced disinfection technologies for the inactivation of antibiotic resistance genes and elimination of horizontal gene transfer activities: Opportunities and challenges
,”
Chem. Eng. J.
450
,
138234
(
2022
).
4.
T.
Takano
,
T.
Mino
,
J.
Sakai
,
N.
Noguchi
,
K.
Tsubaki
, and
H.
Hirayama
, “
Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency
,”
Appl. Phys. Express
10
,
031002
(
2017
).
5.
J.
Zhang
,
L.
Zhou
,
Y.
Gao
,
A.
Lunev
,
B.
Zhang
, and
W.
Götz
, “
Performance and analysis of an ultraviolet C-band light emitting diode with an emission wavelength of 268 nm
,”
Semicond. Sci. Technol.
37
,
07LT01
(
2022
).
6.
Y.
Matsukura
,
T.
Inazu
,
C.
Pernot
,
N.
Shibata
,
M.
Kushimoto
,
M.
Deki
,
Y.
Honda
, and
H.
Amano
, “
Improving light output power of AlGaN-based deep-ultraviolet light-emitting diodes by optimizing the optical thickness of p-layers
,”
Appl. Phys. Express
14
,
084004
(
2021
).
7.
M.
Kneissl
,
T. Y.
Seong
,
J.
Han
, and
H.
Amano
, “
The emergence and prospects of deep-ultraviolet light-emitting diode technologies
,”
Nat. Photonics
13
,
233
(
2019
).
8.
M. A.
Khan
,
N.
Maeda
,
Y.
Itokazu
,
M.
Jo
,
K.
Iimura
, and
H.
Hirayama
, “
Milliwatt-power AlGaN Deep-UV light-emitting diodes at 254 nm emission as a clean alternative to mercury deep-UV lamps
,”
Phys. Status Solidi A
220
,
2200621
(
2023
).
9.
J. H.
Dycus
,
S.
Washiyama
,
T. B.
Eldred
,
Y.
Guan
,
R.
Kirste
,
S.
Mita
,
Z.
Sitar
,
R.
Collazo
, and
J. M.
LeBeau
, “
The role of transient surface morphology on composition control in AlGaN layers and wells
,”
Appl. Phys. Lett.
114
,
031602
(
2019
).
10.
R.
Kondo
,
A.
Yabutani
,
T.
Omori
,
K.
Yamada
,
E.
Matsubara
,
R.
Hasegawa
,
T.
Nishibayashi
,
S.
Iwayama
,
T.
Takeuchi
,
S.
Kamiyama
,
H.
Miyake
, and
M.
Iwaya
, “
Demonstration of ultraviolet-B AlGaN-based laser diode operation with a peak light output power of 150 mW by improving injection efficiency through polarization charge modulation
,”
Appl. Phys. Lett.
121
,
253501
(
2022
).
11.
X. L.
Ji
,
R. L.
Jiang
,
B.
Liu
,
Z. L.
Xie
,
J. J.
Zhou
,
L.
Li
,
P.
Han
,
R.
Zhang
,
Y. D.
Zheng
, and
J. G.
Zheng
, “
Structural characterization of AlGaN/AlN Bragg
,”
Phys. Status Solidi A
205
,
1572
(
2008
).
12.
C.
He
,
Z.
Qin
,
F.
Xu
,
L.
Zhang
,
J.
Wang
,
M.
Hou
,
S.
Zhang
,
X.
Wang
,
W.
Ge
, and
B.
Shen
, “
Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system
,”
Sci. Rep.
6
,
25124
(
2016
).
13.
Y. L.
Tsai
,
C. L.
Wang
,
P. H.
Lin
,
W. T.
Liao
, and
J. R.
Gong
, “
Observation of compositional pulling phenomenon in AlxGa1−xN (0.4<x<1.0) films grown on (0001) sapphire substrates
,”
Appl. Phys. Lett.
82
,
31
(
2003
).
14.
B.
Liu
,
R.
Zhang
,
J. G.
Zheng
,
X. L.
Ji
,
D. Y.
Fu
,
Z. L.
Xie
,
D. J.
Chen
,
P.
Chen
,
R. L.
Jiang
, and
Y. D.
Zheng
, “
Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors
,”
Appl. Phys. Lett.
98
,
261916
(
2011
).
15.
B.
Mazumder
,
S. W.
Kaun
,
J.
Lu
,
S.
Keller
,
U. K.
Mishra
, and
J. S.
Speck
, “
Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures
,”
Appl. Phys. Lett.
102
,
111603
(
2013
).
16.
K.
Uesugi
,
S.
Kuboya
,
K.
Shojiki
,
S.
Xiao
,
T.
Nakamura
,
M.
Kubo
, and
H.
Miyake
, “
263 nm wavelength UV-C LED on face-to-face annealed sputter-deposited AlN with low screw- and mixed-type dislocation densities
,”
Appl. Phys. Express
15
,
055501
(
2022
).
17.
Z.
Zhang
,
M.
Kushimoto
,
A.
Yoshikawa
,
K.
Aoto
,
C.
Sasaoka
,
L. J.
Schowalter
, and
H.
Amano
, “
Key temperature-dependent characteristics of AlGaN-based UV-C laser diode and demonstration of room-temperature continuous-wave lasing
,”
Appl. Phys. Lett.
121
,
222103
(
2022
).
18.
Z.
Zhang
,
M.
Kushimoto
,
A.
Yoshikawa
,
K.
Aoto
,
C.
Sasaoka
,
L. J.
Schowalter
, and
H.
Amano
, “
Continuous-wave lasing of AlGaN-based ultraviolet laser diode at 274.8 nm by current injection
,”
Appl. Phys. Express
15
,
041007
(
2022
).
19.
R. T.
Bondokov
,
S. P.
Branagan
,
N.
Ishigami
,
J.
Grandusky
,
T.
Nagatomi
,
K.
Tatsuta
,
T.
Miebach
, and
J.
Chen
, “
Two-inch aluminum nitride (AIN) single crystal growth for commercial applications
,”
ECS Trans.
104
,
37
(
2021
).
20.
M.
Meneghini
,
D.
Barbisan
,
L.
Rodighiero
,
G.
Meneghesso
, and
E.
Zanoni
, “
Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes
,”
Appl. Phys. Lett.
97
,
143506
(
2010
).
21.
V. K.
Sharma
and
H. V.
Demir
, “
Bright future of deep-ultraviolet photonics: Emerging UVC chip-scale light-source technology platforms, benchmarking, challenges, and outlook for UV disinfection
,”
ACS Photonics
9
,
1513
(
2022
).
You do not currently have access to this content.