Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic processing. To satisfy all these requirements, a photonic platform is proposed that combines low-loss nitride-rich silicon as a guide and low-loss transparent conductive oxides as an active material that can provide high nonlinearity and bistability under both electrical and optical signals.
REFERENCES
1.
D. V.
Christensen
,
R.
Dittmann
,
B.
Linares-Barranco
et al, “
2022 roadmap on neuromorphic computing and engineering
,” Neuromorphic Comput. Eng.
2
(2
), 022501
(2022
).2.
3.
E.
Kandel
,
J. D.
Koester
,
S. H.
Mack
, and
S.
Siegelbaum
, Principles of Neural Science
, 6th ed. (
McGraw Hill/Medical
, 2021
).4.
M.
Bear
,
B.
Connors
, and
M. A.
Paradiso
, Neuroscience: Exploring the Brain
(
Jones & Bartlett Learning
, 2020
).5.
T. F.
De Lima
,
H.-T.
Peng
,
A. N.
Tait
et al, “
Machine learning with neuromorphic photonics
,” J. Lightwave Technol.
37
(5
), 1515
–1534
(2019
).6.
X.
Lin
,
Y.
Rivenson
,
N. T.
Yardimici
et al, “
All-optical machine learning using diffractive deep neural networks
,” Science
361
(6406
), 1004
–1008
(2018
).7.
B. J.
Shastri
,
A. N.
Tait
,
T.
Ferreira de Lima
,
W. H. P.
Pernice
,
H.
Bhaskaran
,
C. D.
Wright
, and
P. R.
Prucnal
, “
Photonics for artificial intelligence and neuromorphic computing
,” Nat. Photonics
15
, 102
–114
(2021
).8.
R.
Stabile
,
G.
Dabos
,
C.
Vagionas
,
B.
Shi
,
N.
Calabretta
, and
N.
Pleros
, “
Neuromorphic photonics: 2D or not 2D?
,” J. Appl. Phys.
129
, 200901
(2021
).9.
G.
Dabos
,
D. V.
Bellas
,
R.
Stabile
,
M.
Moralis-Pegios
,
G.
Giamougiannis
,
A.
Tsakyridis
,
A.
Totovic
,
E.
Lidorikis
, and
N.
Pleros
, “
Neuromorphic photonic technologies and architectures: Scaling opportunities and performance frontiers [invited]
,” Opt. Mater. Express
12
(6
), 2343
–2367
(2022
).10.
A.
Jha
,
C.
Huang
, and
P. R.
Prucnal
, “
Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics
,” Opt. Lett.
45
(17
), 4819
–4822
(2020
).11.
R.
Amin
,
J. K.
George
,
S.
Sun
et al, “
ITO-based electro-absorption modulator for photonic neural activation function
,” APL Mater.
7
, 081112
(2019
).12.
B.
Romeira
,
R.
Adao
,
J. B.
Nieder
et al, “
Brain-inspired nanophotonic spike computing: Challenges and prospects
,” Neuromorphic Comput. Eng.
3
, 033001
(2023
).13.
A.
Rahim
,
E.
Ryckeboer
,
A. Z.
Subramanian
et al, “
Expanding the silicon photonics portoflio with silicon nitride photonic integrated circuits
,” J. Lightwave Technol.
35
(4
), 639
–649
(2017
).14.
C.
Xiang
,
W.
Jin
, and
J. E.
Bowers
, “
Silicon nitride passive and active photonic integrated circuits: Trends and prospects
,” Photonics Res.
10
(10(6
), A82
–A96
(2022
).15.
J.
Gosciniak
, “
Ultra-compact nonvolatile plasmonic phase change modulators and switches with dual electrical-optical functionality
,” AIP Adv.
12
, 035321
(2022
).16.
J.
Gosciniak
, “
Nonvolatile plasmonics based on optically reprogrammable phase change materials
,” IEEE Photonics J.
14
(3
), 4830708
(2022
).17.
C.
Lian
,
C.
Vagionas
,
T.
Alexoudis
,
N.
Pleros
,
N.
Youngblood
, and
C.
Rios
, “
Photonic (computational) memories: Tunable nanophotonics for data storage and computing
,” Nanophotonics
11
(17
), 3823
–3854
(2022
).18.
T.
Mikolajick
,
U.
Schroeder
, and
S.
Slesazeck
, “
The past, the present, and the future of ferroelectric memories
,” IEEE Trans. Electron Devices
67
, 1434
–1443
(2020
).19.
B.
Max
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing
,” ACS Appl. Electron. Mater.
2
, 4023
–4033
(2020
).20.
E.
Covi
,
R.
George
,
J.
Frascaroli
,
S.
Brivio
,
C.
Mayr
,
H.
Mostafa
,
G.
Indiveri
, and
S.
Spiga
, “
Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons
,” J. Phys. D: Appl. Phys.
51
, 344003
(2018
).21.
W.
Zhang
,
B.
Gao
,
J.
Tang
,
X.
Li
,
W.
Wu
,
H.
Qian
, and
H.
Wu
, “
Analog-type resistive switching devices for neuromorphic computing
,” Phys. Status Solidi RRL
13
, 1900204
(2019
).22.
T.
Hasegawa
,
K.
Terabe
,
T.
Tsuruoka
, and
M.
Aono
, “
Atomic switch: Atom/ion movement controlled devices for beyond von Neumann computers
,” Adv. Mater.
24
, 252
–267
(2012
).23.
J.-H.
Cha
,
S. Y.
Yang
,
J.
Oh
,
S.
Choi
,
S.
Park
,
B. C.
Jang
,
W.
Ahn
, and
S.-Y.
Choi
, “
Conductive-bridging random-access memories for emerging neuromorphic computing
,” Nanoscale
12
, 14339
–14368
(2020
).24.
C.-Y.
Wang
,
S.-J.
Liang
,
S.
Wang
et al, “
Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor
,” Sci. Adv.
6
, eaba6173
(2020
).25.
C.
Pan
,
C.-Y.
Wang
,
S.-J.
Liang
et al, “
Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions
,” Nat. Electron.
3
, 383
–390
(2020
).26.
Y.
Van De Burgt
,
E.
Lubberman
,
E. J.
Fuller
et al, “
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
,” Nat. Mater.
16
, 414
–418
(2017
).27.
A.
Melianas
,
T. J.
Quill
,
G.
Lecroy
et al, “
Temperature-resilient solid-state organic artificial synapses for neuromorphic computing
,” Sci. Adv.
6
, eabb2958
(2020
).28.
J.
Gosciniak
,
Z.
Hu
,
M.
Thomaschewski
,
V. J.
Sorger
, and
J. B.
Khurgin
, “
Bistable all-optical devices based on nonlinear epsilon-near-zero (ENZ) materials
,” Laser Photonics Rev.
17
(4
), 2200723
(2023
).29.
J.
Gosciniak
and
J. B.
Khurgin
, “
Transparent conductive oxides as a material platform for photonic neural networks
,” arXiv:2307.10419 (2023
).30.
W.
Jaffray
,
S.
Saha
,
V. M.
Shalaev
,
A.
Boltasseva
, and
M.
Ferrera
, “
Transparent conductive oxides: From all-dielectric plasmonics to a new paradigm in integrated photonics
,” Adv. Opt. Photonics
14
(2
), 148
–208
(2022
).31.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,” Nature
453
, 80
–83
(2008
).32.
N.
Youngblood
,
C. A.
Rios Ocampo
,
W. H. P.
Pernice
, and
H.
Bhaskaran
, “
Integrated optical memristors
,” Nat. Photonics
17
, 561
–572
(2023
).33.
R.
Secondo
,
A.
Ball
,
B.
Diroll
,
D.
Fomra
,
K.
Ding
,
V.
Avrutin
,
U.
Ozgur
,
D. O.
Demchenko
,
J. B.
Khurgin
, and
N.
Kinsey
, “
Deterministic modeling of hybrid nonlinear effects in epsilon-near-zero thin films
,” Appl. Phys. Lett.
120
, 031103
(2022
).34.
J. B.
Khurgin
,
M.
Clerici
, and
N.
Kinsey
, “
Fast and slow nonlinearities in epsilon-near-zero materials
,” Laser Photonics Rev.
15
, 2000291
(2021
).35.
N.
Kinsey
and
J.
Khurgin
, “
Nonlinear epsilon-near-zero materials explained: Opinion
,” Opt. Mater. Express
9
, 2793
–2796
(2019
).36.
H. M.
Gibbs
,
S. L.
McCall
,
T. N. C.
Venkatesan
,
A. C.
Gossard
,
A.
Passner
, and
W.
Wiegmann
, “
Optical bistability in semiconductors
,” Appl. Phys. Lett.
35
, 451
–453
(1979
).37.
H. M.
Gibbs
, Optical Bistability: Controlling Light with Light, Quantum Electronics - Principles and Applications
(
Academic Press
,
Orlando
, 1985
), pp. xii
, 471.38.
E.
Abraham
and
S. D.
Smith
, “
Optical bistability and related devices
,” Rep. Prog. Phys.
45
, 815
–885
(1982
).39.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegmann
,
T. H.
Wood
, and
C. A.
Burrus
, “
Novel hybrid optically bistable switch: The quantum well self‐electro‐optic effect device
,” Appl. Phys. Lett.
45
, 13
–15
(1984
).40.
M.
Soljacic
and
J. D.
Joannopoulos
, “
Enhancement of nonlinear effects using photonics crystals
,” Nat. Mater.
3
, 211
–219
(2004
).41.
T.
Tanabe
,
M.
Notomi
,
S.
Mitsugi
,
A.
Shinya
, and
E.
Kuramochi
, “
Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip
,” Opt. Lett.
30
(19
), 2575
–2577
(2005
).42.
T. K.
Fryett
,
C. M.
Dodson
, and
A.
Majumdar
, “
Cavity enhanced nonlinear optics for few photon optical bistability
,” Opt. Express
23
, 16246
–16255
(2015
).43.
R.
Wang
,
F.
Hu
,
Y.
Meng
,
M.
Gong
, and
Q.
Liu
, “
High-contrast optical bistability using a subwavelength epsilon-near-zero material
,” Opt. Lett.
48
(6
), 1371
–1374
(2023
).44.
E.
Feigenbaum
,
K.
Diest
, and
H. A.
Atwater
, “
Unity-order index change in transparent conductive oxides at visible frequencies
,” Nano Lett.
10
, 2111
–2116
(2010
).45.
M. G.
Wood
,
S.
Campione
,
S.
Parameswaran
,
T. S.
Luk
,
J. R.
Wendt
,
D. K.
Serkland
, and
G. A.
Keeler
, “
Gigahertz speed operation of epsilon-near-zero silicon photonic modulators
,” Optica
5
(3
), 233
–236
(2018
).46.
R.
Dwivedi
and
J.
Toudert
, “
Propagation characteristics of single and multilayer Ga:ZnO in the epsilon near zero region
,” Opt. Express
31
(7
), 11598
–11609
(2023
).47.
A.
Antolik
,
J.
Toudert
,
K.
Szlachetko
et al, “
Optically anisotropic self-organized ZnO:Al eutectic metamaterial for mid-infrared plasmonics
” (unpublished) (2023
).48.
A.
Campione
,
M. G.
Wood
,
D. K.
Serkland
,
S.
Parameswaran
,
J.
Ihlefeld
,
T. S.
Luk
,
J. R.
Wendt
,
K. M.
Geib
, and
G. A.
Keeler
, “
Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide
,” IEEE Photonics J.
9
(4
), 6601307
(2017
).49.
I. C.
Reines
,
M. G.
Wood
,
T. S.
Luk
,
D. K.
Serkland
, and
S.
Campione
, “
Compact epsilon-near-zero silicon photonic phase modulators
,” Opt. Express
26
(17
), 21594
–21605
(2018
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.