Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic processing. To satisfy all these requirements, a photonic platform is proposed that combines low-loss nitride-rich silicon as a guide and low-loss transparent conductive oxides as an active material that can provide high nonlinearity and bistability under both electrical and optical signals.

1.
D. V.
Christensen
,
R.
Dittmann
,
B.
Linares-Barranco
et al, “
2022 roadmap on neuromorphic computing and engineering
,”
Neuromorphic Comput. Eng.
2
(
2
),
022501
(
2022
).
2.
J.
von Neumann
,
The Computer and the Brain
(
Yale University Press
,
1958
).
3.
E.
Kandel
,
J. D.
Koester
,
S. H.
Mack
, and
S.
Siegelbaum
,
Principles of Neural Science
, 6th ed. (
McGraw Hill/Medical
,
2021
).
4.
M.
Bear
,
B.
Connors
, and
M. A.
Paradiso
,
Neuroscience: Exploring the Brain
(
Jones & Bartlett Learning
,
2020
).
5.
T. F.
De Lima
,
H.-T.
Peng
,
A. N.
Tait
et al, “
Machine learning with neuromorphic photonics
,”
J. Lightwave Technol.
37
(
5
),
1515
1534
(
2019
).
6.
X.
Lin
,
Y.
Rivenson
,
N. T.
Yardimici
et al, “
All-optical machine learning using diffractive deep neural networks
,”
Science
361
(
6406
),
1004
1008
(
2018
).
7.
B. J.
Shastri
,
A. N.
Tait
,
T.
Ferreira de Lima
,
W. H. P.
Pernice
,
H.
Bhaskaran
,
C. D.
Wright
, and
P. R.
Prucnal
, “
Photonics for artificial intelligence and neuromorphic computing
,”
Nat. Photonics
15
,
102
114
(
2021
).
8.
R.
Stabile
,
G.
Dabos
,
C.
Vagionas
,
B.
Shi
,
N.
Calabretta
, and
N.
Pleros
, “
Neuromorphic photonics: 2D or not 2D?
,”
J. Appl. Phys.
129
,
200901
(
2021
).
9.
G.
Dabos
,
D. V.
Bellas
,
R.
Stabile
,
M.
Moralis-Pegios
,
G.
Giamougiannis
,
A.
Tsakyridis
,
A.
Totovic
,
E.
Lidorikis
, and
N.
Pleros
, “
Neuromorphic photonic technologies and architectures: Scaling opportunities and performance frontiers [invited]
,”
Opt. Mater. Express
12
(
6
),
2343
2367
(
2022
).
10.
A.
Jha
,
C.
Huang
, and
P. R.
Prucnal
, “
Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics
,”
Opt. Lett.
45
(
17
),
4819
4822
(
2020
).
11.
R.
Amin
,
J. K.
George
,
S.
Sun
et al, “
ITO-based electro-absorption modulator for photonic neural activation function
,”
APL Mater.
7
,
081112
(
2019
).
12.
B.
Romeira
,
R.
Adao
,
J. B.
Nieder
et al, “
Brain-inspired nanophotonic spike computing: Challenges and prospects
,”
Neuromorphic Comput. Eng.
3
,
033001
(
2023
).
13.
A.
Rahim
,
E.
Ryckeboer
,
A. Z.
Subramanian
et al, “
Expanding the silicon photonics portoflio with silicon nitride photonic integrated circuits
,”
J. Lightwave Technol.
35
(
4
),
639
649
(
2017
).
14.
C.
Xiang
,
W.
Jin
, and
J. E.
Bowers
, “
Silicon nitride passive and active photonic integrated circuits: Trends and prospects
,”
Photonics Res.
10
(
10(6
),
A82
A96
(
2022
).
15.
J.
Gosciniak
, “
Ultra-compact nonvolatile plasmonic phase change modulators and switches with dual electrical-optical functionality
,”
AIP Adv.
12
,
035321
(
2022
).
16.
J.
Gosciniak
, “
Nonvolatile plasmonics based on optically reprogrammable phase change materials
,”
IEEE Photonics J.
14
(
3
),
4830708
(
2022
).
17.
C.
Lian
,
C.
Vagionas
,
T.
Alexoudis
,
N.
Pleros
,
N.
Youngblood
, and
C.
Rios
, “
Photonic (computational) memories: Tunable nanophotonics for data storage and computing
,”
Nanophotonics
11
(
17
),
3823
3854
(
2022
).
18.
T.
Mikolajick
,
U.
Schroeder
, and
S.
Slesazeck
, “
The past, the present, and the future of ferroelectric memories
,”
IEEE Trans. Electron Devices
67
,
1434
1443
(
2020
).
19.
B.
Max
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing
,”
ACS Appl. Electron. Mater.
2
,
4023
4033
(
2020
).
20.
E.
Covi
,
R.
George
,
J.
Frascaroli
,
S.
Brivio
,
C.
Mayr
,
H.
Mostafa
,
G.
Indiveri
, and
S.
Spiga
, “
Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons
,”
J. Phys. D: Appl. Phys.
51
,
344003
(
2018
).
21.
W.
Zhang
,
B.
Gao
,
J.
Tang
,
X.
Li
,
W.
Wu
,
H.
Qian
, and
H.
Wu
, “
Analog-type resistive switching devices for neuromorphic computing
,”
Phys. Status Solidi RRL
13
,
1900204
(
2019
).
22.
T.
Hasegawa
,
K.
Terabe
,
T.
Tsuruoka
, and
M.
Aono
, “
Atomic switch: Atom/ion movement controlled devices for beyond von Neumann computers
,”
Adv. Mater.
24
,
252
267
(
2012
).
23.
J.-H.
Cha
,
S. Y.
Yang
,
J.
Oh
,
S.
Choi
,
S.
Park
,
B. C.
Jang
,
W.
Ahn
, and
S.-Y.
Choi
, “
Conductive-bridging random-access memories for emerging neuromorphic computing
,”
Nanoscale
12
,
14339
14368
(
2020
).
24.
C.-Y.
Wang
,
S.-J.
Liang
,
S.
Wang
et al, “
Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor
,”
Sci. Adv.
6
,
eaba6173
(
2020
).
25.
C.
Pan
,
C.-Y.
Wang
,
S.-J.
Liang
et al, “
Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions
,”
Nat. Electron.
3
,
383
390
(
2020
).
26.
Y.
Van De Burgt
,
E.
Lubberman
,
E. J.
Fuller
et al, “
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
,”
Nat. Mater.
16
,
414
418
(
2017
).
27.
A.
Melianas
,
T. J.
Quill
,
G.
Lecroy
et al, “
Temperature-resilient solid-state organic artificial synapses for neuromorphic computing
,”
Sci. Adv.
6
,
eabb2958
(
2020
).
28.
J.
Gosciniak
,
Z.
Hu
,
M.
Thomaschewski
,
V. J.
Sorger
, and
J. B.
Khurgin
, “
Bistable all-optical devices based on nonlinear epsilon-near-zero (ENZ) materials
,”
Laser Photonics Rev.
17
(
4
),
2200723
(
2023
).
29.
J.
Gosciniak
and
J. B.
Khurgin
, “
Transparent conductive oxides as a material platform for photonic neural networks
,” arXiv:2307.10419 (
2023
).
30.
W.
Jaffray
,
S.
Saha
,
V. M.
Shalaev
,
A.
Boltasseva
, and
M.
Ferrera
, “
Transparent conductive oxides: From all-dielectric plasmonics to a new paradigm in integrated photonics
,”
Adv. Opt. Photonics
14
(
2
),
148
208
(
2022
).
31.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
,
80
83
(
2008
).
32.
N.
Youngblood
,
C. A.
Rios Ocampo
,
W. H. P.
Pernice
, and
H.
Bhaskaran
, “
Integrated optical memristors
,”
Nat. Photonics
17
,
561
572
(
2023
).
33.
R.
Secondo
,
A.
Ball
,
B.
Diroll
,
D.
Fomra
,
K.
Ding
,
V.
Avrutin
,
U.
Ozgur
,
D. O.
Demchenko
,
J. B.
Khurgin
, and
N.
Kinsey
, “
Deterministic modeling of hybrid nonlinear effects in epsilon-near-zero thin films
,”
Appl. Phys. Lett.
120
,
031103
(
2022
).
34.
J. B.
Khurgin
,
M.
Clerici
, and
N.
Kinsey
, “
Fast and slow nonlinearities in epsilon-near-zero materials
,”
Laser Photonics Rev.
15
,
2000291
(
2021
).
35.
N.
Kinsey
and
J.
Khurgin
, “
Nonlinear epsilon-near-zero materials explained: Opinion
,”
Opt. Mater. Express
9
,
2793
2796
(
2019
).
36.
H. M.
Gibbs
,
S. L.
McCall
,
T. N. C.
Venkatesan
,
A. C.
Gossard
,
A.
Passner
, and
W.
Wiegmann
, “
Optical bistability in semiconductors
,”
Appl. Phys. Lett.
35
,
451
453
(
1979
).
37.
H. M.
Gibbs
,
Optical Bistability: Controlling Light with Light, Quantum Electronics - Principles and Applications
(
Academic Press
,
Orlando
,
1985
), pp.
xii
, 471.
38.
E.
Abraham
and
S. D.
Smith
, “
Optical bistability and related devices
,”
Rep. Prog. Phys.
45
,
815
885
(
1982
).
39.
D. A. B.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gossard
,
W.
Wiegmann
,
T. H.
Wood
, and
C. A.
Burrus
, “
Novel hybrid optically bistable switch: The quantum well self‐electro‐optic effect device
,”
Appl. Phys. Lett.
45
,
13
15
(
1984
).
40.
M.
Soljacic
and
J. D.
Joannopoulos
, “
Enhancement of nonlinear effects using photonics crystals
,”
Nat. Mater.
3
,
211
219
(
2004
).
41.
T.
Tanabe
,
M.
Notomi
,
S.
Mitsugi
,
A.
Shinya
, and
E.
Kuramochi
, “
Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip
,”
Opt. Lett.
30
(
19
),
2575
2577
(
2005
).
42.
T. K.
Fryett
,
C. M.
Dodson
, and
A.
Majumdar
, “
Cavity enhanced nonlinear optics for few photon optical bistability
,”
Opt. Express
23
,
16246
16255
(
2015
).
43.
R.
Wang
,
F.
Hu
,
Y.
Meng
,
M.
Gong
, and
Q.
Liu
, “
High-contrast optical bistability using a subwavelength epsilon-near-zero material
,”
Opt. Lett.
48
(
6
),
1371
1374
(
2023
).
44.
E.
Feigenbaum
,
K.
Diest
, and
H. A.
Atwater
, “
Unity-order index change in transparent conductive oxides at visible frequencies
,”
Nano Lett.
10
,
2111
2116
(
2010
).
45.
M. G.
Wood
,
S.
Campione
,
S.
Parameswaran
,
T. S.
Luk
,
J. R.
Wendt
,
D. K.
Serkland
, and
G. A.
Keeler
, “
Gigahertz speed operation of epsilon-near-zero silicon photonic modulators
,”
Optica
5
(
3
),
233
236
(
2018
).
46.
R.
Dwivedi
and
J.
Toudert
, “
Propagation characteristics of single and multilayer Ga:ZnO in the epsilon near zero region
,”
Opt. Express
31
(
7
),
11598
11609
(
2023
).
47.
A.
Antolik
,
J.
Toudert
,
K.
Szlachetko
et al, “
Optically anisotropic self-organized ZnO:Al eutectic metamaterial for mid-infrared plasmonics
” (unpublished) (
2023
).
48.
A.
Campione
,
M. G.
Wood
,
D. K.
Serkland
,
S.
Parameswaran
,
J.
Ihlefeld
,
T. S.
Luk
,
J. R.
Wendt
,
K. M.
Geib
, and
G. A.
Keeler
, “
Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide
,”
IEEE Photonics J.
9
(
4
),
6601307
(
2017
).
49.
I. C.
Reines
,
M. G.
Wood
,
T. S.
Luk
,
D. K.
Serkland
, and
S.
Campione
, “
Compact epsilon-near-zero silicon photonic phase modulators
,”
Opt. Express
26
(
17
),
21594
21605
(
2018
).
You do not currently have access to this content.