The pulse electron paramagnetic resonance (EPR) is widely used in different branches of material and life sciences, including promising applications in quantum information processing and quantum sensing. Here, we study the effect of the high polarizability of KTaO3 and SrTiO3 quantum paraelectrics on local electric and magnetic field components of microwaves (MW) at Fe3+ and Mn2+ paramagnetic ions. The measurements are performed with a commercial EPR spectrometer using dielectric and split-ring resonators. It is found that the power of MW pulses used in coherent spin manipulation at nanoseconds timescale decreases to milliwatts as compared to the tens–hundreds of watts usually used for spins in conventional materials. The amplification of MW fields is related to the very high dielectric permittivity (up to 25 000 in SrTiO3) of quantum paraelectrics at GHz frequencies and temperatures below 20 K. This creates the large induced polarization and, thus, huge displacement current and in turn the secondary MW magnetic field. Numerical simulations support the observation of the enhanced magnetic MW field in the high-permittivity sample. The low MW power for excitation of spin transitions in quantum paraelectrics eliminates the requirement of expensive high-power MW equipment. This approach also allows to globally control spin qubits in tandem with integrated devices based on conventional semiconductor MW circuits working at mW powers. It is suggested that quantum paraelectrics can also be used as substrates for deposition of nanoparticles or films of other materials, which would be manipulated by the low-power MW pulses.

1.
A.
Schweiger
and
J.
Jeschke
,
Principles of Pulse Electron Paramagnetic Resonance
(
Oxford University Press
,
2001
).
2.
M.
Mehring
and
V. A.
Weberrus
,
Object-Oriented Magnetic Resonance
(
Elsevier Science and Techn.
,
2012
).
3.
P. G.
Baranov
,
H. J.
von Bardeleben
,
F.
Jelezko
, and
J.
Wrachtrup
,
Magnetic Resonance of Semiconductors and Their Nanostructures
, Springer Series in Materials Science 253 (
Springer-Verlag GmbH
,
Wien, Austria
2017
).
4.
J.-M.
Spaeth
,
J. R.
Niklas
, and
R. H.
Bartram
,
Structural Analysis of Point Defects in Solids: An Introduction to Multiple Magnetic Resonance Spectroscopy
, Springer series in Solid-State Science 43 (
Springer-Verlag
,
Berlin
,
1992
).
5.
R. P.
Feinman
, “
Quantum mechanical computers
,”
Found. Phys.
16
,
507
(
1986
).
6.
N. P.
de Leon
,
K. M.
Itoh
,
D.
Kim
et al, “
Materials challenges and opportunities for quantum computing hardware
,”
Science
372
,
eabb2823
(
2021
).
7.
K.
Bader
,
D.
Dengler
,
S.
Lenz
,
B.
Endeward
,
S.-D.
Jiang
,
P.
Neugebauer
, and
J.
van Slageren
, “
Room temperature quantum coherence in a potential molecular qubit
,”
Nat. Commun.
5
,
5304
(
2014
).
8.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
, “
Quantum sensing
,”
Rev. Mod. Phys.
89
,
035002
(
2017
).
9.
S. E.
Crawford
,
R. A.
Shugayev
,
H. P.
Paudel
,
P.
Lu
,
M.
Syamlal
,
P. R.
Ohodnicki
,
B.
Chorpening
,
R.
Gentry
, and
Y.
Duan
, “
Quantum sensing for energy applications: Review and perspective
,”
Adv. Quantum Technol.
4
,
2100049
(
2021
).
10.
M.
Shiddiq
,
D.
Komijani
,
Y.
Duan
,
A.
Gaita-Arino
,
E.
Coronado
, and
S.
Hill
, “
Enhancing coherence in molecular spin qubits via atomic clock transitions
,”
Nature
531
,
348
351
(
2016
).
11.
V.
Ranjan
,
J.
O'Sullivan
,
E.
Albertinale
,
B.
Albanese
,
T.
Chanelière
,
T.
Schenkel
,
D.
Vion
,
D.
Esteve
,
E.
Flurin
,
J.
Morton
, and
P.
Bertet
, “
Multimode storage of quantum microwave fields in electron spins over 100 ms
,”
Phys. Rev. Lett.
125
,
210505
(
2020
).
12.
J.
Liu
,
J.
Mrozek
,
A.
Ullah
,
Y.
Duan
,
J. J.
Baldovi
,
E.
Coronado
,
A.
Gaita-Arino
, and
A.
Ardavan
, “
Quantum coherent spin-electric control in a molecular nanomagnet at clock transitions
,”
Nat. Phys.
17
,
1205
1209
(
2021
).
13.
See https://www.bruker.com/en/products-and-solutions/mr/epr-instruments/epr-resonators/flexline.html for details of the dielectric ring MD5 and split-ring MS3 resonators.
14.
H.
Vogt
and
H.
Uve
, “
Hyper-Raman scattering from the incipient ferroelectric KTaO3
,”
Phys. Rev. B
29
,
1030
(
1984
).
15.
H.
Vogt
, “
Refined treatment of the model of linearly coupled anharmonic oscillators and its application to the temperature dependence of the zone-center soft-mode frequencies of KTaO3 and SrTiO3
,”
Phys. Rev. B
51
,
8046
8059
(
1995
).
16.
A.
Müller
and
H.
Burkard
, “
SrTiO3: An intrinsic quantum paraelectric below 4 K
,”
Phys. Rev. B
19
,
3593
3602
(
1979
).
17.
H.
Fujishita
,
S.
Kitazawa
,
M.
Saito
,
R.
Ishisaka
,
H.
Okamoto
, and
T.
Yamaguchi
, “
Quantum paraelectric states in SrTiO3, and KTaO3: Barrett model, Vendik model, and quantum criticality
,”
J. Phys. Soc. Jpn.
85
,
074703
(
2016
).
18.
R. G.
Geyer
,
B.
Riddle
,
J.
Krupka
, and
L. A.
Boatner
, “
Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures
,”
J. Appl. Phys.
97
,
104111
(
2005
).
19.
W. B.
Mims
,
The Linear Electric Field Effect in Paramagnetic Resonance
(
Clarendon Press
,
Oxford
,
1976
).
20.
T.
Sakudo
and
H.
Unoki
,
J. Phys. Soc. Jpn.
28
,
125
(
1970
);
H.
Unoki
and
T.
Sakudo
, “
Electric field effect on the ESR spectrum of Fe3+ in SrTiO3
,”
J. Phys. Soc. Jpn.
35
,
1128
1132
(
1973
).
21.
I. N.
Geifman
,
M. D.
Glinchuk
, and
B. K.
Krulikovskii
, “
Electric-field effect in ESR and local fields in KTaO3
,”
Sov. Phys. JETP
48
,
741
743
(
1978
);
V. V.
Laguta
,
A. A.
Karmazin
,
M. D.
Glinchuk
, and
I. P.
Bykov
, “
Electric field effect in EPR of cubic Fe3+ in potation tantalite
,”
Solid State Phys.
28
,
1218
1220
(
1986
).
22.
Y.
Tateno
,
K.
Endo
,
S.
Arisawa
,
A.-M.
Vlaicu
,
L.
Nedelcu
,
N.
Preda
,
M.
Secu
,
R.
Iordanescu
,
A. C.
Kuncser
, and
P.
Badica
, “
Grown of SrTiO3 single crystals with diameter of about 30 mm by the Verneuil method
,”
Cryst. Growth Des.
19
,
604
612
(
2019
).
23.
S.
Zlotnik
,
P. M.
Vilarinho
,
M. E. V.
Costa
,
J. A.
Moreira
, and
A.
Almeida
, “
Growth of incipient ferroelectric KTaO3 single crystals by a modified self-flux method
,”
Cryst. Growth Des.
10
,
3397
3404
(
2010
).
24.
K. A.
Muller
, “
Paramagnetische rezonanz von Fe3+ in SrTiO3 einkristallen
,”
Helv. Phys. Acta
31
,
173
(
1958
).
25.
D. M.
Hannon
, “
Electron paramagnetic resonance of Fe3+ and Ni3+ in KTaO3
,”
Phys. Rev.
164
,
366
(
1967
).
26.
D. M.
Hannon
, “
Electron paramagnetic resonance of Mn2+ in KTaO3
,”
Phys. Rev. B
7
,
2153
(
1971
).
27.
V. V.
Laguta
,
M. D.
Glinchuk
,
I. P.
Bykov
,
J.
Rosa
,
L.
Jastrabik
,
M.
Savinov
, and
Z.
Trybula
, “
Paramagnetic dipole centers in KTaO3: Electron-spin-resonance and dielectric spectroscopy study
,”
Phys. Rev. B
61
,
3897
(
2000
).
28.
J.
Krupka
, “
Frequency domain complex permittivity measurements at microwave frequencies
,”
Meas. Sci. Technol.
17
,
R55
R70
(
2006
).
29.
V.
Bovtun
,
S.
Veljko
,
A.
Axelsson
,
S.
Kamba
,
N.
Alford
, and
J.
Petzelt
, “
Microwave characterization of thin ferroelectric films without electrodes by composite dielectric resonator
,”
Integr. Ferroelectr.
98
,
53
61
(
2008
).
30.
R. F.
Blunt
and
W. F.
Love
, “
The dielectric properties of barium titanate at low temperatures
,”
Phys. Rev.
76
,
1202
(
1949
).
31.
J.
Kobajashi
,
S.
Okamoto
, and
R.
Ueda
, “
Dielectric behavior of lead titanate at low temperature
,”
Phys. Rev.
103
,
830
831
(
1956
).
32.
I.
Rychetský
,
J.
Petzelt
, and
T.
Ostapchuk
, “
Grain-boundary and crack effects on the dielectric response of high-permittivity films and ceramics
,”
Appl. Phys. Lett.
81
,
4224
4026
(
2002
).
33.
A. J.
Sigillito
,
H.
Malissa
,
A. M.
Tyryshkin
,
H.
Riemann
,
N. V.
Abrosimov
,
P.
Becker
,
H.-J.
Pohl
,
M. L. W.
Thewalt
,
K. M.
Itoh
,
J. J. L.
Morton
,
A. A.
Houck
,
D. I.
Schuster
, and
S. A.
Lyon
, “
Fast, low-power manipulation of spin ensembles in superconducting microresonators
,”
Appl. Phys. Lett.
104
,
222407
(
2014
).

Supplementary Material

You do not currently have access to this content.