In the last few years, there has been significant interest in gallium oxide devices for resistive switching technologies due to its remarkable sensitivity to oxygen. In this study, we present the growth and resistive switching of a ( 2 ¯01) oriented (75 ± 3) nm β-Ga2O3 thin film on a Ru/Al2O3 substrate using magnetron radio frequency sputtering. The observed resistive switching was attributed to the formation and rupture of conductive filaments constituted by oxygen vacancies in the β-Ga2O3 film as confirmed by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. The electrical conduction was found to be of Ohmic nature in the low-resistance ON state, while the high-resistance OFF state was governed by the Poole–Frenkel transport mechanism. Exhibiting stable endurance cycles, long retention times, and ON/OFF ratios of up to 104, the devices can be considered as promising prototypes for future nonvolatile resistive switching random access memory with respect to both switching performance and device stability.

1.
E.
Chikoidze
,
A.
Fellous
,
A.
Perez-Tomas
,
G.
Sauthier
,
T.
Tchelidze
,
C.
Ton-That
,
T. T.
Huynh
,
M.
Phillips
,
S.
Russell
,
M.
Jennings
et al,
Mater. Today Phys.
3
,
118
(
2017
).
2.
H.
Xue
,
Q.
He
,
G.
Jian
,
S.
Long
,
T.
Pang
, and
M.
Liu
,
Nanoscale Res. Lett.
13
,
290
(
2018
).
3.
M.
Fleischer
and
H.
Meixner
,
Sens. Actuators B
4
,
437
(
1991
).
5.
J.
Xu
,
W.
Zheng
, and
F.
Huang
,
J. Mater. Chem. C
7
,
8753
(
2019
).
6.
A.
Goyal
,
B. S.
Yadav
,
O.
Thakur
,
A.
Kapoor
, and
R.
Muralidharan
,
J. Alloys Compd.
583
,
214
(
2014
).
7.
Y.
Kokubun
,
K.
Miura
,
F.
Endo
, and
S.
Nakagomi
,
Appl. Phys. Lett.
90
,
031912
(
2007
).
8.
C.-H.
Liao
,
K.-H.
Li
,
C.
Castanedo
,
G.
Zhang
, and
X.
Li
, arXiv:2005.05799 (
2020
).
9.
N.
Suzuki
,
S.
Ohira
,
M.
Tanaka
,
T.
Sugawara
,
K.
Nakajima
, and
T.
Shishido
,
Phys. Status Solidi C
4
,
2310
(
2007
).
10.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
R.
Schewski
, and
G.
Wagner
,
ECS J. Solid State Sci. Technol.
6
,
Q3040
(
2017
).
11.
K. D.
Leedy
,
K. D.
Chabak
,
V.
Vasilyev
,
D. C.
Look
,
K.
Mahalingam
,
J. L.
Brown
,
A. J.
Green
,
C. T.
Bowers
,
A.
Crespo
,
D. B.
Thomson
et al,
APL Mater.
6
,
101102
(
2018
).
12.
K.
Matsuzaki
,
H.
Hiramatsu
,
K.
Nomura
,
H.
Yanagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Thin Solid Films
496
,
37
(
2006
).
13.
X.
Gao
,
Y.
Xia
,
J.
Ji
,
H.
Xu
,
Y.
Su
,
H.
Li
,
C.
Yang
,
H.
Guo
,
J.
Yin
, and
Z.
Liu
,
Appl. Phys. Lett.
97
,
193501
(
2010
).
14.
M.
Ogita
,
K.
Higo
,
Y.
Nakanishi
, and
Y.
Hatanaka
,
Appl. Surf. Sci.
175–176
,
721
(
2001
).
15.
C.
Adelmann
,
L. G.
Wen
,
A. P.
Peter
,
Y. K.
Siew
,
K.
Croes
,
J.
Swerts
,
M.
Popovici
,
K.
Sankaran
,
G.
Pourtois
,
S.
Van Elshocht
et al, in
IEEE International Interconnect Technology Conference
(
IEEE
,
2014
), pp.
173
176
.
16.
X.
Zhang
,
H.
Huang
,
R.
Patlolla
,
W.
Wang
,
F. W.
Mont
,
J.
Li
,
C.-K.
Hu
,
E. G.
Liniger
,
P. S.
McLaughlin
,
C.
Labelle
et al, in
2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC)
(
IEEE
,
2016
), pp.
31
33
.
18.
R.
Waser
and
M.
Aono
,
Nat. Mater.
6
,
833
(
2007
).
19.
A. A.
Bessonov
,
M. N.
Kirikova
,
D. I.
Petukhov
,
M.
Allen
,
T.
Ryhänen
, and
M. J.
Bailey
,
Nat. Mater.
14
,
199
(
2015
).
20.
A.
Chanthbouala
,
V.
Garcia
,
R. O.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N. D.
Mathur
et al,
Nat. Mater.
11
,
860
(
2012
).
21.
J.-O.
Krisponeit
,
B.
Damaschke
,
V.
Moshnyaga
, and
K.
Samwer
,
Phys. Rev. Lett.
122
,
136801
(
2019
).
22.
M. J.
Rozenberg
,
I. H.
Inoue
, and
M. J.
Sanchez
,
Appl. Phys. Lett.
88
,
033510
(
2006
).
23.
J. C.
Gonzalez-Rosillo
,
R.
Ortega-Hernandez
,
J.
Jareño-Cerulla
,
E.
Miranda
,
J.
Suñe
,
X.
Granados
,
X.
Obradors
,
A.
Palau
, and
T.
Puig
,
J. Electroceram.
39
,
185
(
2017
).
24.
D.
Cui
,
Y.
Du
,
Z.
Lin
,
M.
Kang
,
Y.
Wang
,
J.
Su
,
J.
Zhang
,
Y.
Hao
, and
J.
Chang
,
IEEE Electron Device Lett.
44
,
237
(
2023
).
25.
S. W.
Han
,
C. J.
Park
, and
M. W.
Shin
,
Surf. Interfaces
31
,
102099
(
2022
).
26.
L.
Nagarajan
,
R. A.
De Souza
,
D.
Samuelis
,
I.
Valov
,
A.
Börger
,
J.
Janek
,
K.-D.
Becker
,
P. C.
Schmidt
, and
M.
Martin
,
Nat. Mater.
7
,
391
(
2008
).
27.
D.
Guo
,
Z.
Wu
,
Y.
An
,
P.
Li
,
P.
Wang
,
X.
Chu
,
X.
Guo
,
Y.
Zhi
,
M.
Lei
,
L.
Li
et al,
Appl. Phys. Lett.
106
,
042105
(
2015
).
28.
J.-B.
Yang
,
T.-C.
Chang
,
J.-J.
Huang
,
S.-C.
Chen
,
P.-C.
Yang
,
Y.-T.
Chen
,
H.-C.
Tseng
,
S. M.
Sze
,
A.-K.
Chu
, and
M.-J.
Tsai
,
Thin Solid Films
529
,
200
(
2013
).
29.
D.-Y.
Lee
and
T.-Y.
Tseng
,
J. Appl. Phys.
110
,
114117
(
2011
).
30.
J.-J.
Huang
,
T.-C.
Chang
,
J.-B.
Yang
,
S.-C.
Chen
,
P.-C.
Yang
,
Y.-T.
Chen
,
H.-C.
Tseng
,
S. M.
Sze
,
A.-K.
Chu
, and
M.-J.
Tsai
,
IEEE Electron Device Lett.
33
,
1387
(
2012
).
31.
W.
Xu
,
H.
Cao
,
L.
Liang
, and
J.-B.
Xu
,
ACS Appl. Mater. Interfaces
7
,
14720
(
2015
).
32.
P.
Marie
,
X.
Portier
, and
J.
Cardin
,
Phys. Status Solidi A
205
,
1943
(
2008
).
33.
A.
Hassanien
,
A.
Atta
,
M.
El-Nahass
,
S. I.
Ahmed
,
A. A.
Shaltout
,
A. M.
Al-Baradi
,
A.
Alodhayb
, and
A.
Kamal
,
Opt. Quantum Electron.
52
,
1
(
2020
).
34.
D.
Gogova
,
G.
Wagner
,
M.
Baldini
,
M.
Schmidbauer
,
K.
Irmscher
,
R.
Schewski
,
Z.
Galazka
,
M.
Albrecht
, and
R.
Fornari
,
J. Cryst. Growth
401
,
665
(
2014
).
35.
S.
Lee
,
K.
Kaneko
, and
S.
Fujita
,
Jpn. J. Appl. Phys.
55
,
1202B8
(
2016
).
36.
G.
Battiston
,
R.
Gerbasi
,
M.
Porchia
,
R.
Bertoncello
, and
F.
Caccavale
,
Thin Solid Films
279
,
115
(
1996
).
37.
M. K.
Yadav
,
A.
Mondal
,
S.
Das
,
S. K.
Sharma
, and
A.
Bag
,
J. Alloys Compd.
819
,
153052
(
2020
).
38.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Cryst. Growth
378
,
591
(
2013
).
39.
Y.
An
,
L.
Dai
,
Y.
Wu
,
B.
Wu
,
Y.
Zhao
,
T.
Liu
,
H.
Hao
,
Z.
Li
,
G.
Niu
,
J.
Zhang
et al,
J. Adv. Dielectr.
9
,
1950032
(
2019
).
40.
A.
Karg
,
J. A.
Bich
,
A.
Messow
,
M.
Schowalter
,
S.
Figge
,
A.
Rosenauer
,
P.
Vogt
, and
M.
Eickhoff
,
Cryst. Growth Des.
23
,
4435
(
2023
).
41.
V.
Gottschalch
,
K.
Mergenthaler
,
G.
Wagner
,
J.
Bauer
,
H.
Paetzelt
,
C.
Sturm
, and
U.
Teschner
,
Phys. Status Solidi A
206
,
243
(
2009
).
42.
D.
Tahara
,
H.
Nishinaka
,
S.
Morimoto
, and
M.
Yoshimoto
,
Jpn. J. Appl. Phys.
56
,
078004
(
2017
).
43.
H.
Sun
,
C.
Torres Castanedo
,
K.
Liu
,
K.-H.
Li
,
W.
Guo
,
R.
Lin
,
X.
Liu
,
J.
Li
, and
X.
Li
,
Appl. Phys. Lett.
111
,
162105
(
2017
).
44.
S. S.
Ezzat
,
P. D.
Mani
,
A.
Khaniya
,
W.
Kaden
,
D.
Gall
,
K.
Barmak
, and
K. R.
Coffey
,
J. Vac. Sci. Technol. A
37
,
031516
(
2019
).
45.
M.
Sauerbrey
,
J.
Hocker
,
M.
Wellbrock
,
M.
Schowalter
,
J.-O.
Krisponeit
,
K.
Muller-Caspary
,
A.
Rosenauer
,
G.
Wei
,
L.
Colombi Ciacchi
,
J.
Falta
et al,
Cryst. Growth Des.
16
,
4216
(
2016
).
46.
S.
Ghosh
,
M.
Biesinger
,
R.
LaPierre
, and
P.
Kruse
,
J. Appl. Phys.
101
,
114322
(
2007
).
47.
D.
Zatsepin
,
D.
Boukhvalov
,
A.
Zatsepin
,
Y. A.
Kuznetsova
,
D.
Gogova
,
V. Y.
Shur
, and
A.
Esin
, arXiv:1801.09451 (
2018
).
48.
Y.
An
,
S.
Wang
,
L.
Duan
,
J.
Liu
, and
Z.
Wu
,
Appl. Phys. Lett.
102
,
212411
(
2013
).
49.
E. W.
Lim
and
R.
Ismail
,
Electronics
4
,
586
(
2015
).

Supplementary Material

You do not currently have access to this content.