The surface conductivity influences the etched pattern profiles in the plasma process. In the dielectric film etching, it is vital to reduce the charging build-up, which bends the trajectory of incoming ions for highly anisotropic etching. A significant increase in surface electric conductivity of SiO2 films was observed when exposed to down-flow plasmas containing hydrogen fluoride (HF) at cryogenic temperature (−60 °C). This phenomenon can be attributed to two factors: (i) the absorption of HF and/or its compounds and (ii) the presence of H2O, which is likely originating from the etching by-product of SiO2 and/or within the reactor. Comparing the surface electric resistance of the samples treated with HF plasmas to that of CF4/H2 and C4F8/H2 plasmas, we found that HF plasma treatment enables to be approximately three and six orders of magnitude lower. By using in situ x-ray photoemission spectroscopy, it was revealed that the presence of HF and/or its compounds and H2O were absorbed on the sample surface at −60 °C. These results strongly suggest that the cryogenic plasma etching with HF-contained gases can be used to alleviate the charge build-up issues.

1.
International Roadmap for Devices and System (IRDS)
, see https://irds.ieee.org/.
2.
3.
G. S.
Hwang
and
K. P.
Giapis
,
J. Vac. Sci. Technol. B
15
,
70
(
1997
).
4.
R. J.
Hoekstra
,
M. J.
Kushner
,
V.
Sukharev
, and
P.
Schoenborn
,
J. Vac. Sci. Technol. B
16
,
2102
(
1998
).
5.
J. C.
Arnold
and
H. H.
Sawin
,
J. Appl. Phys.
70
,
5314
(
1991
).
6.
M.
Wang
and
M. J.
Kushner
,
J. Appl. Phys.
107
,
023309
(
2010
).
7.
8.
J.-K.
Lee
,
I.-Y.
Jang
,
S.-H.
Lee
,
C.-K.
Kim
, and
S. H.
Moon
,
J. Electrochem. Soc.
156
,
D269
(
2009
).
9.
F.
Kruger
,
S.
Wilczek
,
T.
Mussenbrock
, and
J.
Schulze
,
Plasma Sources Sci. Technol.
28
,
075017
(
2019
).
10.
H. J.
Kim
,
L.
Wen
,
D. S.
Kim
,
K. H.
Kim
,
J. W.
Hong
,
W. J.
Chang
,
S.
Namgoong
,
D. W.
Kim
, and
G.-Y.
Yeom
,
Appl. Surf. Sci.
596
,
153604
(
2022
).
11.
K.
Tokashiki
,
H.
Cho
,
S.
Banna
,
J.-Y.
Lee
,
K.
Shin
,
V.
Todorow
,
W.-S.
Kim
,
K.
Bai
,
S.
Joo
,
J.-D.
Choe
,
K.
Ramaswamy
,
A.
Agarwal
,
S.
Rauf
,
K.
Collins
,
S.-J.
Choi
,
H.
Cho
,
H.-J.
Kim
,
C.
Lee
,
D.
Lymberopoulos
,
J.
Yoon
,
W.
Han
, and
J.-T.
Moon
,
Jpn. J. Appl. Phys., Part 1
48
,
08HD01
(
2009
).
12.
T.
Yamaguchi
,
T.
Komuro
,
C.
Koshimizu
,
S.
Takashima
,
K.
Takeda
,
H.
Kondo
,
K.
Ishikawa
,
M.
Sekine
, and
M.
Hori
,
J. Phys. D
45
,
025203
(
2012
).
13.
Y.
Ohya
,
M.
Iwata
,
K.
Ishikawa
,
M.
Sekine
,
M.
Hori
, and
H.
Sugai
,
Jpn. J. Appl. Phys., Part 1
55
,
080309
(
2016
).
14.
B. B.
Sahu
,
K.
Nakane
,
K.
Ishikawa
,
M.
Sekine
,
T.
Tsutsumi
,
T.
Gohira
,
Y.
Ohya
,
N.
Ohno
, and
M.
Hori
,
Phys. Chem. Chem. Phys.
24
,
13883
(
2022
).
15.
G.
Antoun
,
R.
Dussart
,
T.
Tillocher
,
P.
Lefaucheux
,
C.
Cardinaud
,
A.
Girard
,
S.
Tahara
,
K.
Yamazaki
,
K.
Yatsuda
,
J.
Faguet
, and
K.
Maekawa
,
Jpn. J. Appl. Phys., Part 1
58
,
SEEB03
(
2019
).
16.
T.
Lill
,
I. L.
Berry
,
M.
Shen
,
A.
Fisher
,
T.
Panagopoulos
,
J. P.
Chang
, and
V.
Vahedi
,
J. Vac. Sci. Technol. A
41
,
023005
(
2023
).
17.
R.
Chanson
,
L.
Zhang
,
S.
Naumov
,
Y. A.
Mankelevich
,
T.
Tillocher
,
P.
Lefaucheux
,
R.
Dussart
,
S.
De Gendt
, and
J.-F.
de Marneffe
,
Sci. Rep.
8
,
1886
(
2018
).
18.
G.
Antoun
,
T.
Tillocher
,
P.
Lefaucheux
,
J.
Faguet
,
K.
Maekawa
, and
R.
Dussart
,
Sci. Rep.
11
,
357
(
2021
).
19.
S. N.
Hsiao
,
T.-T.-N.
Nguyen
,
T.
Tsutsumi
,
K.
Ishikawa
, and
M.
Hori
,
Coatings
11
,
1535
(
2021
).
20.
R.
Dussart
,
R.
Ettouri
,
J.
Nos
,
G.
Antoun
,
T.
Tillocher
, and
P.
Lefaucheux
,
J. Appl. Phys.
133
,
113306
(
2023
).
21.
S. N.
Hsiao
,
N.
Britun
,
T.-T.-N.
Nguyen
,
T.
Tsutsumi
,
K.
Ishikawa
,
M.
Sekine
, and
M.
Hori
,
Vacuum
210
,
111863
(
2023
).
22.
J.
Algaba
,
B.
Mendiboure
,
P. G.
Alvarez
, and
F. J.
Blas
,
RSC Adv.
12
,
18821
(
2022
).
23.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
/
Taylor & Francis Group
,
New York
,
2014
).
24.
C.
Avendano
,
T.
Lafitte
,
C. S.
Adjiman
,
A.
Galindo
,
E. A.
Muller
, and
G.
Jackson
,
J. Phys. Chem. B
117
,
2717
(
2013
).
25.
J.
Wada
,
G.
Ueta
,
S.
Okabe
, and
M.
Hikita
,
IEEE Trans. Dielectr. Electr. Insul.
23
,
838
(
2016
).
26.
H.-H.
Doh
,
J.-H.
Kim
,
K.-W.
Whang
, and
S.-H.
Lee
,
J. Vac. Sci. Technol. A
14
,
1088
(
1996
).
27.
M. J.
Kushner
,
J. Appl. Phys.
53
,
2923
(
1982
).
28.
F.
Gaboriau
,
G.
Cartry
,
M.-C.
Peignon
, and
C.
Cardinaud
,
J. Phys. D
39
,
1830
(
2006
).
29.
D. C.
Marra
and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
15
,
2508
(
1997
).
30.
C. R.
Helms
and
B. E.
Deal
,
J. Vac. Sci. Technol. A
10
,
806
(
1992
).
31.
C. S.
Lee
,
J. T.
Baek
,
H. J.
Yoo
, and
S. I.
Woo
,
J. Electrochem. Soc.
143
,
1099
(
1996
).
32.
W. I.
Jang
,
C. A.
Choi
,
M. L.
Lee
,
C. H.
Jun
, and
Y. T.
Kim
,
J. Micromech. Microeng.
12
,
297
(
2002
).
33.
K.
Miyata
,
M.
Hori
, and
T.
Goto
,
J. Vac. Sci. Technol. A
14
,
2343
(
1996
).
34.
Y.
Zhang
,
G. S.
Oehrlein
, and
F. H.
Bell
,
J. Vac. Sci. Technol. A
14
,
2127
(
1996
).
35.
H.
Biederman
,
Plasma Polymer Films
(
Imperial College Press
,
London
,
2004
).
36.
C.
Cardinaud
and
G.
Turban
,
Appl. Surf. Sci.
45
,
109
(
1990
).
37.
D.
Metzier
,
C.
Li
,
S.
Engelmann
,
R. L.
Bruce
,
E. A.
Joseph
, and
G. S.
Oehrlein
,
J. Chem. Phys.
146
,
052801
(
2017
).
38.
D.
Goodacre
,
B.
Monika
,
C.
Buechner
,
H.
Hoek
,
S. M.
Gericke
,
V.
Jovic
,
J. B.
Franklin
,
S.
Kittiwatanakul
,
T.
Sohnel
,
H.
Bluhm
, and
K. E.
Smith
,
J. Chem. Phys.
152
,
044715
(
2020
).
39.
F.
Cemin
,
A.
Girard
, and
C.
Cardinaud
,
Appl. Surf. Sci.
637
,
157941
(
2023
).

Supplementary Material

You do not currently have access to this content.