A 100 ps laser is used to probe the pressure generation, depth of the non-solid ablator, and the non-linear optical effects through tamper materials. Samples consisted of an aluminum ablator with tampers of sapphire and coverslip glass. In general, the sapphire tamped sample achieves higher pressures at lower laser intensities as compared to the coverslip glass tamped sample. Attempts to model the details of this set of experimental data with standard available radiation coupled hydrodynamic codes make clear that more physics is needed in these simulations to accurately predict the impact of the tamper material on the pressure generation and the depth of non-solid aluminum.

1.
E.
Kaselouris
,
I.
Fitilis
,
A.
Skoulakis
et al, “
The importance of the laser pulse-ablator interaction dynamics prior to the ablation plasma phase in inertial confinement fusion studies
,”
Philos. Trans. R. Soc. A
378
,
20200030
(
2020
).
2.
E.
Campbell
,
V.
Goncharov
,
T.
Sangster
et al, “
Laser-direct-drive program: Promise, challenge, and path forward
,”
Matter Radiat. Extremes
2
,
37
(
2017
).
3.
R.
Betti
and
O.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
,
435
(
2016
).
4.
P.
Miller
,
J.
Bude
,
T.
Suratwala
et al, “
Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces
,”
Opt. Lett.
35
,
2702
(
2010
).
5.
P.
DePond
,
J.
Fuller
,
S.
Khairallah
et al, “
Laser-metal interaction dynamics during additive manufacturing resolved by detection of thermally-induced electron emission
,”
Commun. Mater.
1
,
92
(
2020
).
6.
K.
Batani
,
D.
Batani
,
X. T.
He
, and
K.
Shigemori
, “
Recent progress in matter in extreme states created by laser
,”
Matter Radiat. Extremes
7
,
013001
(
2022
).
7.
S.
Anisimov
and
V.
Khokhlov
,
Instabilities in Laser-Matter Interaction
(
CRC Press
,
1995
).
8.
N.
Bloembergen
, “
Laser–material interactions: Fundamentals and applications
,”
AIP Conf. Proc.
388
,
91
119
(
1993
).
9.
S.
Rapp
,
G.
Heinrich
, and
M.
Domke
, “
The combination of direct and confined laser ablation mechanisms for the selective structuring of thin silicon nitride layers
,”
Phys. Proc.
56
,
998
1006
(
2014
).
10.
B.
Rethfeld
,
D. S.
Ivanov
,
M. E.
Garcia
et al, “
Modelling ultrafast laser ablation
,”
J. Phys. D
50
,
193001
(
2017
).
11.
D.
Swift
and
R.
Kraus
, “
Properties of plastic ablators in laser-driven material dynamics experiments
,”
Phys. Rev. E
77
,
066402
(
2008
).
12.
Z.
Zhi-Yuan1
,
Z.
Jie1
,
H.
Zuo-Qiang
et al, “
The characteristics of confined ablation in laser propulsion
,”
Chin. Phys.
15
,
580
(
2006
).
13.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
et al, “
Physical study of laser-produced plasma in confined geometry
,”
J. Appl. Phys.
68
,
775
784
(
1990
).
14.
S.
Ashitkov
,
M.
Agranat
,
G.
Kanel
et al, “
Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses
,”
JETP Lett.
92
,
516
520
(
2010
).
15.
S.
Ly
,
J.
Lee
,
A. M.
Rubenchik
et al, “
Tamper performance for confined laser drive applications
,”
Opt. Express
31
,
22532
(
2023
).
16.
M. S.
Powell
,
P. R.
Bowlan
,
S. F.
Son
et al, “
A benchtop shock physics laboratory: Ultrafast laser driven shock spectroscopy and interferometry methods
,”
Rev. Sci. Instrum.
90
,
063001
(
2019
).
17.
H.
Shu
,
S.
Fu
,
X.
Huang
et al, “
Plastic behavior of aluminum in high strain rate regime
,”
J. Appl. Phys.
116
,
033506
(
2014
).
18.
R.
Evans
,
A. D.
Badger
,
F.
Falliès
et al, “
Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum
,”
Phys. Rev. Lett.
77
,
3359
(
1996
).
19.
G.
Miloshevsky
, “
Ultrafast laser matter interactions: Modeling approaches, challenges, and prospects
,”
Modell. Simul. Mater. Sci. Eng.
30
,
083001
(
2022
).
20.
W. J.
Keller
,
N.
Shen
,
A. M.
Rubenchik
et al, “
Physics of picosecond pulse laser ablation
,”
J. Appl. Phys.
125
,
085103
(
2019
).
21.
M. J.
Echeverria
,
S.
Galitskiy
, and
A.
Mishra
, “
Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales
,”
Comput. Mater. Sci.
198
,
110668
(
2021
).
22.
S.
Galitskiy
and
A. M.
Dongare
, “
Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales
,”
J. Mater. Sci.
56
,
4446
(
2021
).
23.
C.
Chen
,
S.
Galitskiy
,
A.
Mishra
, and
A. M.
Dongare
, “
Modeling laser interactions with aluminum and tantalum targets using a hybrid atomistic-continuum model
,”
J. Appl. Phys.
133
,
105901
(
2023
).
24.
M.
Armstrong
,
J.
Crowhurst
,
S.
Bastea
, and
J. M.
Zaug
, “
Ultrafast observation of shocked states in a precompressed material
,”
J. Appl. Phys.
108
,
023511
(
2010
).
25.
J. C.
Crowhurst
,
M. R.
Armstrong
,
K. B.
Knight
et al, “
Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold
,”
Phys. Rev. Lett.
107
,
144302
(
2011
).
26.
M.
Takeda
,
H.
Ina
, and
S.
Kobayashi
, “
Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
,”
J. Opt. Soc. Am.
72
,
156
160
(
1982
).
27.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
).
28.
S. E.
Parsons
,
M. R.
Armstrong
,
R. E.
Turner
et al, “
A method of determining ablation depth from free surface velocities in laser induced ablation experiments
,” in
22nd Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter
(
APS
,
2023
).
29.
See https://www.mtixtl.com/AL-C-50D05-C2.aspx for “
Al2O3–sapphire wafer C-plane (0001) 2″ dia × 0.5 mm 2SP - ALC50D05C2
” (
MTI Corporation
,
2022
).
30.
S. R.
Hoon
,
A. D.
Thomas
, and
P. E.
Linton
, “
The design and development of a closed chamber for the in-situ quantification of dryland soil carbon dioxide fluxes
,”
Geogr. Res.
47
,
71
82
(
2009
).
31.
B.
Fryxell1
,
K.
Olson
,
P.
Ricker
et al, “
Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
,”
Astrophys. J. Suppl. Ser.
131
,
273
(
2000
).
32.
S. H.
Guang
, “
Self-focusing, self-phase modulation, and spectral self-broadening
,” in
Nonlinear Optics and Photonics
(
Oxford
,
2014
), Chap. 6.
33.
D.
Ashkenasi
,
A.
Rosenfeld
,
H.
Varel
et al, “
Laser processing of sapphire with picosecond and sub-picosecond pulses
,”
Appl. Surf. Sci.
120
,
65
80
(
1997
).
34.
Y.
Jiang
,
X.
Xiang
,
H.
Wang
et al, “
Damage/ablation morphology of laser conditioned sapphire under 1064 nm laser irradiation
,”
Opt. Laser Technol.
44
,
948
953
(
2012
).
35.
E.
Arola
, “
Theoretical studies on multiphoton absorption of ultrashort laser pulses in sapphire
,”
IEEE J. Quantum Electron.
50
,
1
720
(
2014
).
36.
J.
MacFarlane
,
I.
Golovkin
, and
P.
Woodruff
, “
HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
,”
J. Quant. Spectrosc. Radiat. Transfer
99
,
381
397
(
2006
).

Supplementary Material

You do not currently have access to this content.