Electromagnetic noise is one of the main external factors decreasing superconducting qubit coherence. Matched coaxial filters can prevent microwave and IR photons' negative influence on superconducting quantum circuits. In this report, we describe the design and fabrication process of matched coaxial filters for noise-sensitive measurements at millikelvin temperatures. A robust transmission coefficient and ultralow reflection loss of −20 dB in the frequency range up to 20 GHz is achieved. Fabricated low-pass filters have linear transmission and reflection characteristics with 3 dB-cutoff frequency of 1.5–2.5 GHz. A method for extracting the propagation constant and filter impedance from scattering parameter measurements is demonstrated. This method is experimentally approved on a filter with a compound of Cu powder and Stycast epoxy resin and a filter filled with ECCOSORB CR-110 epoxy resin. The proposed design and assembly technology are versatile for various compounds and provide highly repeatable geometric and microwave characteristics. Furthermore, we demonstrate that these low-pass coaxial filters can be effectively utilized to improve superconducting qubit relaxation due to suppressing standing waves originating from reflections in control coaxial cables.

1.
G.
Fedorov
,
S.
Remizov
,
D.
Shapiro
et al, “
Photon transport in a Bose-Hubbard chain of superconducting artificial atoms
,”
Phys. Rev. Lett.
126
,
180503
(
2021
).
2.
I. S.
Besedin
,
M. A.
Gorlach
,
N. N.
Abramov
et al, “
Topological excitations and bound photon pairs in a superconducting quantum metamaterial
,”
Phys. Rev. B
103
,
224520
(
2021
).
3.
A.
Zorin
, “
Josephson charge-phase qubit with radio frequency read-out: Coupling and decoherence
,”
J. Exp. Theor. Phys.
98
,
1250
1261
(
2004
).
4.
F.
Arute
,
K.
Arya
,
R.
Babbush
et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
5.
A.
Lukashenko
and
A.
Ustinov
, “
Improved powder filters for qubit measurements
,”
Rev. Sci. Instrum.
79
,
014701
(
2008
).
6.
J. M.
Kreikebaum
,
A.
Dove
,
W.
Livingston
et al, “
Optimization of infrared and magnetic shielding of superconducting tin and al coplanar microwave resonators
,”
Supercond. Sci. Technol.
29
,
104002
(
2016
).
7.
See https://www.minicircuits.com/WebStore/RF-Filters.html for various types of LPF, HPF and BPF filters.
8.
Y.
Sung
,
F.
Beaudoin
,
L. M.
Norris
et al, “
Non-Gaussian noise spectroscopy with a superconducting qubit sensor
,”
Nat. Commun.
10
,
3715
(
2019
).
9.
D. A.
Rower
,
L.
Ateshian
,
L. H.
Li
et al, “
Evolution of 1/f flux noise in superconducting qubits with weak magnetic fields
,”
Phys. Rev. Lett.
130
,
220602
(
2023
).
10.
A. R.
Matanin
,
K. I.
Gerasimov
,
E. S.
Moiseev
et al, “
Towards highly efficient broadband superconducting quantum memory
,”
Phys. Rev. Appl.
19
,
034011
(
2023
).
11.
IN.
Moskalenko
,
I. A.
Simakov
,
N. N.
Abramov
et al, “
High fidelity two-qubit gates on fluxoniums using a tunable coupler
,”
npj Quantum Inf.
8
,
130
(
2022
).
12.
S.
Danilin
,
J.
Barbosa
,
M.
Farage
et al, “
Engineering the microwave to infrared noise photon flux for superconducting quantum systems
,”
EPJ Quantum Technol.
9
,
1
22
(
2022
).
13.
Y.-X.
Wang
and
A. A.
Clerk
, “
Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy
,”
Nat. Commun.
12
,
6528
(
2021
).
14.
R.
Rehammar
and
S.
Gasparinetti
, “
Low-pass filter with ultra-wide stopband for quantum computing applications
,” arXiv:2205.03941 (
2022
).
15.
M.
Fang
,
B.
Campbell
,
Z.
Chen
et al, “
Optimizing hardware compatibility for scaling up superconducting qubits
,”
APS March Meeting Abstracts 2015
(
American Physical Society
,
2015
), B39–002.
16.
J. M.
Martinis
,
M. H.
Devoret
, and
J.
Clarke
, “
Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction
,”
Phys. Rev. B
35
,
4682
(
1987
).
17.
E.
Xie
, “
Impedance matching of metal powder filters for experiments with superconducting flux quantum bits
,” Ph.D. thesis, Bachelor's thesis (
TU München
,
2011
).
18.
K.
Bladh
,
D.
Gunnarsson
,
E.
Hürfeld
et al, “
Comparison of cryogenic filters for use in single electronics experiments
,”
Rev. Sci. Instrum.
74
,
1323
1327
(
2003
).
19.
F.
Mueller
,
R. N.
Schouten
,
M.
Brauns
et al, “
Printed circuit board metal powder filters for low electron temperatures
,”
Rev. Sci. Instrum.
84
,
044706
(
2013
).
20.
S. H.
Lee
and
S.-G.
Lee
, “
Study on the fabrication of low-pass metal powder filters for use at cryogenic temperatures
,”
J. Korean Phys. Soc.
69
,
272
276
(
2016
).
21.
F.
Milliken
,
J.
Rozen
,
G.
Keefe
et al, “
50 ω characteristic impedance low-pass metal powder filters
,”
Rev. Sci. Instrum.
78
,
024701
(
2007
).
22.
D. M.
Pozar
,
Microwave Engineering.
4th ed. (
Wiley
,
New York
,
2011
).
23.
D.
Ezenkova
,
D.
Moskalev
,
N.
Smirnov
et al, “
Broadband SNAIL parametric amplifier with microstrip impedance transformer
,”
Appl. Phys. Lett.
121
,
232601
(
2022
).
24.
M.
Thalmann
,
H.-F.
Pernau
,
C.
Strunk
et al, “
Comparison of cryogenic low-pass filters
,”
Rev. Sci. Instrum.
88
(
11
),
114703
(
2017
).
25.
F.
Blondelle
,
A.
Sultan
,
E.
Collin
et al, “
Electrical conductance of bolted copper joints for cryogenic applications
,”
J. Low Temp. Phys.
175
,
877
887
(
2014
).
27.
N. A.
Masluk
, “
Reducing the losses of the fluxonium artificial atom
,” Ph.D. thesis (
Yale University
,
2012
).
28.
Y.
Tsui
,
R.
Mahmoud
,
E.
Surrey
et al, “
Superconducting and mechanical properties of low-temperature solders for joints
,”
IEEE Trans. Appl. Supercond.
26
(
3
),
6900204
(
2016
).
29.
A. L.
de Paula
,
M. C.
Rezende
, and
J. J.
Barroso
, “
Modified Nicolson-Ross-Weir (NRW) method to retrieve the constitutive parameters of low-loss materials
,” in
2011 SBMO/IEEE MTT-S IMOC 2011, Natal, Brazil
(
IEEE
,
2011
), pp.
488
492
.
31.
A.
Paquette
,
J.
Griesmar
,
G.
Lavoie
et al, “
Absorptive filters for quantum circuits: Efficient fabrication and cryogenic power handling
,”
Appl. Phys. Lett.
121
,
124001
(
2022
).
32.
S.
Krinner
,
S.
Storz
,
P.
Kurpiers
et al, “
Engineering cryogenic setups for 100-qubit scale superconducting circuit systems
,”
EPJ Quantum Technol.
6
,
2
(
2019
).
33.
T.
Connolly
,
P. D.
Kurilovich
,
S.
Diamond
et al, “
Coexistence of nonequilibrium density and equilibrium energy distribution of quasiparticles in a superconducting qubit
,” arXiv:2302.12330 (
2023
).

Supplementary Material

You do not currently have access to this content.