A HfO2/Al2O3/AlN stack deposited in a plasma-enhanced atomic layer deposition system is used as the gate dielectric for GaN metal–insulator–semiconductor structures. Prior to the deposition, in situ remote plasma pretreatments (RPPs) with O2, NH3, and NH3–O2 (in sequence) were carried out. Frequency-dependent capacitance–voltage (CV) measurements reveal that for all the RPP-treated samples, the interface trap density Dit was significantly reduced compared to the sample without RPP. In particular, the NH3-treated sample exhibits an extremely low Dit of ∼1011 cm−2·eV−1 from EC − 0.31 eV to EC − 0.46 eV. To characterize the interface traps at deeper levels, the transfer pulsed IV measurement was employed further. In the energy range of ECET > 0.54 eV, the interface trap charge density Qit of various samples demonstrates the following order: NH3 RPP < NH3–O2 RPP < O2 RPP < without RPP. By adjusting multiple pulse widths, the Dit derived from the Qit result matches the CV measurement precisely. Moreover, X-ray photoelectron spectroscopy analysis of the Ga 3d core-level indicates that NH3 RPP facilitates the conversion of Ga2O into GaN at high RF power of 2500 W, whereas O2 RPP mainly oxidizes GaN to relatively stable Ga2O3. Combined with the CV and pulsed IV measurements, it is confirmed that a strong positive correlation exists between Ga2O and the interface traps, rather than Ga2O3.

1.
S.
Hoshi
,
M.
Itoh
,
T.
Marui
,
H.
Okita
,
Y.
Morino
,
I.
Tamai
,
F.
Toda
,
S.
Seki
, and
T.
Egawa
,
Appl. Phys. Express
2
,
061001
(
2009
).
2.
H.
Sun
,
A. R.
Alt
,
H.
Benedickter
,
C. R.
Bolognesi
,
E.
Feltin
,
J.-F.
Carlin
,
M.
Gonschorek
,
N.
Grandjean
,
T.
Maier
, and
R.
Quay
,
IEEE Electron Device Lett.
30
(
8
),
796
798
(
2009
).
3.
S.
Bouzid-Driad
,
H.
Maher
,
N.
Defrance
,
V.
Hoel
,
J. C.
De Jaeger
,
M.
Renvoise
, and
P.
Frijlink
,
IEEE Electron Device Lett.
34
(
1
),
36
38
(
2013
).
4.
H. W.
Then
,
L. A.
Chow
,
S.
Dasgupta
,
S.
Gardner
,
M.
Radosavljevic
,
V. R.
Rao
,
S. H.
Sung
,
G.
Yang
, and
P.
Fischer
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2015
), pp.
16.13.11
16.13.14
.
5.
N. X.
Truyen
,
N.
Taoka
,
A.
Ohta
,
K.
Makihara
,
H.
Yamada
,
T.
Takahashi
,
M.
Ikeda
,
M.
Shimizu
, and
S.
Miyazaki
,
Jpn. J. Appl. Phys., Part 1
57
(
4S
),
04FG11
(
2018
).
6.
T.
Hashizume
,
S.
Ootomo
, and
H.
Hasegawa
,
Appl. Phys. Lett.
83
(
14
),
2952
2954
(
2003
).
7.
P. D.
Ye
,
B.
Yang
,
K. K.
Ng
,
J.
Bude
,
G. D.
Wilk
,
S.
Halder
, and
J. C. M.
Hwang
,
Appl. Phys. Lett.
86
(
6
),
063501
(
2005
).
8.
C.
Liu
,
E. F.
Chor
, and
L. S.
Tan
,
Appl. Phys. Lett.
88
(
17
),
173504
(
2006
).
9.
J.
Shi
and
L. F.
Eastman
,
IEEE Electron Device Lett.
32
(
3
),
312
314
(
2011
).
10.
D. A.
Deen
,
D. F.
Storm
,
R.
Bass
,
D. J.
Meyer
,
D. S.
Katzer
,
S. C.
Binari
,
J. W.
Lacis
, and
T.
Gougousi
,
Appl. Phys. Lett.
98
(
2
),
023506
(
2011
).
11.
S.
Huang
,
Q.
Jiang
,
S.
Yang
,
Z.
Tang
, and
K. J.
Chen
,
IEEE Electron Device Lett.
34
(
2
),
193
195
(
2013
).
12.
S.
Yang
,
S.
Liu
,
Y.
Lu
,
C.
Liu
, and
K. J.
Chen
,
IEEE Trans. Electron Devices
62
(
6
),
1870
1878
(
2015
).
13.
N.
Sun
,
H.
Huang
,
Z.
Sun
,
R.
Wang
,
S.
Li
,
P.
Tao
,
Y.
Ren
,
S.
Song
,
H.
Wang
,
S.
Li
,
W.
Cheng
, and
H.
Liang
,
IEEE Trans. Electron Devices
69
(
1
),
82
87
(
2022
).
14.
X.
Qin
,
H.
Dong
,
J.
Kim
, and
R. M.
Wallace
,
Appl. Phys. Lett.
105
(
14
),
141604
(
2014
).
15.
M. S.
Miao
,
J. R.
Weber
, and
C. G.
van de Walle
,
J. Appl. Phys.
107
(
12
),
123713
(
2010
).
16.
J. H.
Kim
,
H. G.
Choi
,
M.-W.
Ha
,
H. J.
Song
,
C. H.
Roh
,
J. H.
Lee
,
J. H.
Park
, and
C.-K.
Hahn
,
Jpn. J. Appl. Phys., Part 1
49
(
4S
),
04DF05
(
2010
).
17.
S.
Yang
,
Z.
Tang
,
K.-Y.
Wong
,
Y.-S.
Lin
,
C.
Liu
,
Y.
Lu
,
S.
Huang
, and
K. J.
Chen
,
IEEE Electron Device Lett.
34
(
12
),
1497
1499
(
2013
).
18.
A. P.
Edwards
,
J. A.
Mittereder
,
S. C.
Binari
,
D. S.
Katzer
,
D. F.
Storm
, and
J. A.
Roussos
,
IEEE Electron Device Lett.
26
(
4
),
225
227
(
2005
).
19.
M. C. S.
Escaño
,
J. T.
Asubar
,
Z.
Yatabe
,
M. Y.
David
,
M.
Uenuma
,
H.
Tokuda
,
Y.
Uraoka
,
M.
Kuzuhara
, and
M.
Tani
,
Appl. Surf. Sci.
481
,
1120
1126
(
2019
).
20.
J. W.
Chung
,
J. C.
Roberts
,
E. L.
Piner
, and
T.
Palacios
,
IEEE Electron Device Lett.
29
(
11
),
1196
1198
(
2008
).
21.
K.
Deng
,
X.
Wang
,
S.
Huang
,
P.
Li
,
Q.
Jiang
,
H.
Yin
,
J.
Fan
,
K.
Wei
,
Y.
Zheng
,
J.
Shi
, and
X.
Liu
,
ACS Appl. Mater. Interfaces
15
(
20
),
25058
25065
(
2023
).
22.
C. L.
Hinkle
,
M.
Milojevic
,
B.
Brennan
,
A. M.
Sonnet
,
F. S.
Aguirre-Tostado
,
G. J.
Hughes
,
E. M.
Vogel
, and
R. M.
Wallace
,
Appl. Phys. Lett.
94
(
16
),
162101
(
2009
).
23.
H.
Qie
,
J.
Liu
,
Q.
li
,
Q.
Sun
,
H.
Gao
,
X.
Sun
,
Y.
Zhou
, and
H.
Yang
,
Appl. Phys. Lett.
121
(
21
),
212106
(
2022
).
24.
D. M.
Zhernokletov
,
M. A.
Negara
,
R. D.
Long
,
S.
Aloni
,
D.
Nordlund
, and
P. C.
McIntyre
,
ACS Appl. Mater. Interfaces
7
(
23
),
12774
12780
(
2015
).
25.
N.
Ramanan
,
B.
Lee
, and
V.
Misra
,
IEEE Trans. Electron Devices
62
(
2
),
546
553
(
2015
).
26.
Z.
Liu
,
S.
Huang
,
Q.
Bao
,
X.
Wang
,
K.
Wei
,
H.
Jiang
,
H.
Cui
,
J.
Li
,
C.
Zhao
,
X.
Liu
,
J.
Zhang
,
Q.
Zhou
,
W.
Chen
,
B.
Zhang
, and
L.
Jia
,
J. Vac. Sci. Technol., B
34
(
4
),
041202
(
2016
).
27.
C. M.
Balkas
and
R. F.
Davis
,
J. Am. Ceram. Soc.
79
(
9
),
2309
2312
(
1996
).
You do not currently have access to this content.