A two-dimensional implicit electrostatic particle-in-cell model is applied for the simulation of non-uniformly magnetized capacitively coupled plasmas. In the absence of a magnetic field, the plasma density is concentrated at the center of the reactor, under the studied parameters. This leads to the formation of a radial density gradient and subsequently generates a radial electric field that causes the deflection of incident ions toward the bottom electrode. Minimizing ion deflection is imperative in order to prevent detrimental effects on plasma processing. In pursuit of this objective, a static magnetic field is applied to the capacitively coupled plasmas by installing direct current coils on the upper section of the reactor. This arrangement has been observed to considerably alter the radial distributions of plasma density and the incident angle of ion bombardment on the bottom electrode.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
New York
,
2005
).
2.
K.
Nojiri
,
Dry Etching Technology for Semiconductors
(
Springer International Publishing
,
New York
,
2015
).
3.
C. G. N.
Lee
,
K. J.
Kanarik
, and
R. A.
Gottscho
,
J. Phys. D
47
,
273001
(
2014
).
4.
H. C.
Lee
,
Appl. Phys. Rev.
5
,
011108
(
2018
).
5.
T.
Kitajima
,
M.
Izawa
,
N.
Nakano
, and
T.
Makabe
,
J. Phys. D
30
,
1783
(
1997
).
6.
S.
Gomez
,
R.
Jun Belen
,
M.
Kiehlbauch
, and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
22
,
606
(
2004
).
7.
T.
Xu
,
Z.
Tao
,
H.
Li
,
X.
Tan
, and
H.
Li
,
Adv. Mech. Eng.
9
,
1
19
(
2017
).
8.
R.
Dussart
,
T.
Tillocher
,
P.
Lefaucheux
, and
M.
Boufnichel
,
J. Phys. D
47
,
123001
(
2014
).
9.
E. W.
Berg
and
S. W.
Pang
,
J. Electrochem. Soc.
146
,
775
(
1999
).
10.
S.
Rauf
,
Plasma Sources Sci. Technol.
29
,
095019
(
2020
).
11.
C. H.
Kim
,
J. S.
Kim
,
M. Y.
Hur
,
Y.
Sakiyama
, and
H. J.
Lee
,
Plasma Sources Sci. Technol.
30
,
075005
(
2021
).
12.
G.
Wakayama
and
K.
Nanbu
,
IEEE Trans. Plasma Sci.
31
,
638
(
2003
).
13.
H. J.
Kim
,
J. S.
Kim
, and
H. J.
Lee
,
J. Appl. Phys.
126
,
173301
(
2019
).
14.
Y.
Liu
,
J. P.
Booth
, and
P.
Chabert
,
Plasma Sources Sci. Technol.
27
,
055012
(
2018
).
15.
Y.
Liu
,
J. P.
Booth
, and
P.
Chabert
,
Plasma Sources Sci. Technol.
27
,
025006
(
2018
).
16.
Y.
Wu
,
D. L.
Olynick
,
A.
Goodyear
,
C.
Peroz
,
S.
Dhuey
,
X.
Liang
, and
S.
Cabrini
,
Microelectron. Eng.
88
,
2785
(
2011
).
17.
S.
Wickramanayaka
,
Y.
Nakagawa
,
Y.
Sago
, and
Y.
Numasawa
,
J. Vac. Sci. Technol., A
18
,
823
(
2000
).
18.
A. P.
Paranjpe
,
M. M.
Moslehi
, and
C. J.
Davis
,
J. Vac. Sci. Technol., A
10
,
1140
(
1992
).
19.
Y. Y.
Daniel
,
J.
Hoffman
,
M. L.
Miller
,
J. G.
Yang
,
H.
Chae
,
M.
Barnes
, and
T.
Ishikawa
, U.S. patent 20030218427 A1 (
2003
).
20.
M. D.
Carter
,
P. M.
Ryan
,
D.
Hoffman
,
W. S.
Lee
,
D.
Buchberger
, and
V.
Godyak
,
J. Appl. Phys.
100
,
073305
(
2006
).
21.
K.
Bera
,
S.
Rauf
,
J.
Kenney
,
L.
Dorf
, and
K.
Collins
,
J. Appl. Phys.
107
,
053302
(
2010
).
22.
H.
Wang
,
W.
Jiang
, and
Y.
Wang
,
Plasma Sources Sci. Technol.
19
,
045023
(
2010
).
23.
Q. Z.
Zhang
,
S. X.
Zhao
,
W.
Jiang
, and
Y. N.
Wang
,
J. Phys. D
45
,
305203
(
2012
).
24.
W.
Jiang
,
H. Y.
Wang
,
Z. H.
Bi
, and
Y. N.
Wang
,
Plasma Sources Sci. Technol.
20
,
035013
(
2011
).
25.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
Hilger
,
New York
,
1991
).
26.
S.
Zenitani
and
T.
Umeda
,
Phys. Plasmas
25
,
112110
(
2018
).
27.
28.
J.
Bai
,
Y.
Cao
,
X.
He
, and
E.
Peng
,
Comput. Phys. Commun.
261
,
107655
(
2021
).
29.
A. V.
Phelps
and
Z. L.
Petrović
,
Plasma Sources Sci. Technol.
8
,
R21
(
1999
).
You do not currently have access to this content.