We theoretically study a one-dimensional non-Hermitian Su–Schrieffer–Heeger model with an imaginary gauge field and spin–orbit coupling. We find that, under open boundary conditions, the dispersions possess the reciprocating real–complex–real transitions with increasing the strength of spin–orbit coupling. Correspondingly, the bulk energy eigenstates exhibit a reciprocating non-Hermitian skin effect. This mechanism can be characterized by the generalized Brillouin zone moduli, which approaches zero or infinity at the transition points. We further demonstrate the non-zero winding number inside the loops of generalized Brillouin zone when the strength of intra-cell spin–orbit coupling is larger than the inter-cell one, which results in the bipolar non-Hermitian skin effect. As the intra-cell and inter-cell spin–orbit coupling strength becomes comparable, the bipolar non-Hermitian skin effect degenerates to the conventional non-Hermitian skin effect. Our work may pave the way for the non-Hermitian optoelectronic devices utilizing the reciprocating non-Hermitian skin effect and the bipolar non-Hermitian skin effect by engineering the spin–orbit coupling.

1.
C. M.
Bender
and
S.
Boettcher
,
Phys. Rev. Lett.
80
,
5243
(
1998
).
2.
C. E.
Rüter
,
K. G.
Makris
,
R. E.
Ganainy
et al,
Nat. Phys.
6
,
192
(
2010
).
3.
Q.
Liang
,
D.
Xie
,
Z.
Dong
et al,
Phys. Rev. Lett.
129
,
070401
(
2022
).
4.
A.
Li
,
H.
Wei
,
M.
Cotrufo
et al,
Nat. Nanotechnol.
18
,
706
720
(
2023
).
5.
L. G.
Wright
,
F. O.
Wu
,
D. N.
Christodoulides
et al,
Nat. Phys.
18
,
1018
(
2022
).
6.
M.-A.
Miri
and
A.
Alù
,
Science
363
,
eaar7709
(
2019
).
7.
S.
Lin
,
L.
Jin
, and
Z.
Song
,
Phys. Rev. B
99
,
165148
(
2019
).
8.
M.
Yang
,
L.
Zhu
,
Q.
Zhong
et al,
Nat. Commun.
14
,
1145
(
2023
).
9.
L. J.
Fernández-Alcázar
,
R.
Kononchuk
, and
T.
Kottos
,
Commun. Phys.
4
,
79
(
2021
).
10.
C.
Wang
,
W. R.
Sweeney
,
A. D.
Stone
et al,
Science
373
,
1261
(
2021
).
11.
L.
Jin
and
Z.
Song
,
Phys. Rev. Lett.
121
,
073901
(
2018
).
12.
S.
Yao
and
Z.
Wang
,
Phys. Rev. Lett.
121
,
086803
(
2018
).
13.
K.
Yokomizo
and
S.
Murakami
,
Phys. Rev. Lett.
123
,
066404
(
2019
).
14.
K.
Xu
,
X.
Zhang
,
K.
Luo
et al,
Phys. Rev. B
103
,
125411
(
2021
).
15.
K.
Zhang
,
Z.
Yang
, and
C.
Fang
,
Phys. Rev. Lett.
125
,
126402
(
2020
).
16.
K.
Zhang
,
Z.
Yang
, and
C.
Fang
,
Nat. Commun.
13
,
2496
(
2022
).
17.
W. T.
Xue
,
M. R.
Li
,
Y. M.
Hu
et al,
Phys. Rev. B
103
,
L241408
(
2021
).
18.
S.
Wong
and
S. S.
Oh
,
Phys. Rev. Res.
3
,
033042
(
2021
).
19.
S.
Weidemann
,
M.
Kremer
,
T.
Helbig
et al,
Science
368
,
311
(
2020
).
20.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
,
Science
314
,
1757
(
2006
).
21.
M.
König
,
S.
Wiedmann
,
C.
Brüne
et al,
Science
318
,
766
(
2007
).
22.
A. B.
Khanikaev
,
S.
Hossein Mousavi
,
W.-K.
Tse
et al,
Nat. Mater.
12
,
233
(
2013
).
23.
Q.
Yan
,
B.
Zhao
,
R.
Zhou
et al,
Nanophotonics
12
,
2247
(
2023
).
24.
L.
Xie
,
L.
Jin
, and
Z.
Song
,
Sci. Bull.
68
,
255
(
2023
).
25.
S.
Imhof
,
C.
Berger
,
F.
Bayer
et al,
Nat. Phys.
14
,
925
(
2018
).
26.
K.
Luo
,
R.
Yu
, and
H.
Weng
,
Research
2018
,
6793752
.
27.
T.
Helbig
,
T.
Hofmann
,
S.
Imhof
et al,
Nat. Phys.
16
,
747
(
2020
).
28.
Z.
Yang
,
F.
Gao
,
X.
Shi
et al,
Phys. Rev. Lett.
114
,
114301
(
2015
).
29.
H.
Shen
,
B.
Zhen
, and
L.
Fu
,
Phys. Rev. Lett.
120
,
146402
(
2018
).
30.
J.
Zhong
,
K.
Wang
,
Y.
Park
et al,
Phys. Rev. B
104
,
125416
(
2021
).
31.
K.
Kawabata
,
K.
Shiozaki
,
M.
Ueda
et al,
Phys. Rev. X
9
,
041015
(
2019
).
32.
N.
Okuma
,
K.
Kawabata
,
K.
Shiozaki
et al,
Phys. Rev. Lett.
124
,
086801
(
2020
).
33.
T.
Zhang
,
X.
Zhang
,
M.-H.
Lu
et al,
Phys. Rev. B
107
,
094111
(
2023
).
34.
L.
Jin
and
Z.
Song
,
Phys. Rev. B
99
,
081103
(
2019
).
35.
S.
Longhi
,
D.
Gatti
, and
G.
Della Valle
,
Phys. Rev. B
92
,
094204
(
2015
).
36.
Z.
Oztas
and
N.
Candemir
,
Phys. Lett. A
383
,
1821
(
2019
).
37.
C. E.
Whittaker
,
E.
Cancellieri
,
P. M.
Walker
et al,
Phys. Rev. B
99
,
081402
(
2019
).
38.
R.
Su
,
S.
Ghosh
,
T. C. H.
Liew
et al,
Sci. Adv.
7
,
eabf8049
(
2021
).
39.
N.
Pernet
,
P.
St-Jean
, and
D. D. o
Solnyshkov
,
Nat. Phys.
18
,
678
(
2022
).
40.
A. V.
Nalitov
,
G.
Malpuech
,
H.
Terças
et al,
Phys. Rev. Lett.
114
,
026803
(
2015
).
41.
Y.
Zhou
,
H.
Wang
,
S.
Luo
et al,
Phys. Rev. Appl.
20
,
024028
(
2023
).
42.
Z.
Wang
,
X.-T.
Zeng
,
Y.
Biao
et al,
Phys. Rev. Lett.
130
,
057201
(
2023
).
43.
F.
Song
,
S.
Yao
, and
Z.
Wang
,
Phys. Rev. Lett.
123
,
246801
(
2019
).
You do not currently have access to this content.