Single molecule localization microscopy relies on the precise quantification of the position of single dye emitters in a sample. This precision is improved by the number of photons that can be detected from each molecule. Particularly recording at cryogenic temperatures dramatically reduces photobleaching and would, hence, in principle, allow the user to massively increase the illumination time to several seconds. The downside of long illuminations, however, would be image blur due to inevitable jitter or drift occurring during the illuminations, which deteriorates the localization precision. In this paper, we theoretically demonstrate that a parallel recording of the fiducial marker beads together with a fitting approach accounting for the full drift trajectory allows for largely eliminating drift effects for drift magnitudes of several hundred nanometers per frame. We showcase the method for linear and diffusional drift as well as oscillations, assuming fixed dipole orientations during each illumination.

1.
M. J.
Rust
,
M.
Bates
, and
X.
Zhuang
, “
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
,”
Nat. Methods
3
,
793
795
(
2006
).
2.
B.
Huang
,
W.
Wang
,
M.
Bates
, and
X.
Zhuang
, “
Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy
,”
Science
319
,
810
813
(
2008
).
3.
S.
Hess
,
T.
Girirajan
, and
M.
Mason
, “
Ultra-high resolution imaging by fluorescence photoactivation localization microscopy
,”
Biophys. J.
91
,
4258
4272
(
2006
).
4.
R.
Kaufmann
,
C.
Hagen
, and
K.
Grünewald
, “
Fluorescence cryo-microscopy: Current challenges and prospects
,”
Curr. Opin. Chem. Biol.
20
,
86
91
(
2014
).
5.
W.
Li
,
S. C.
Stein
,
I.
Gregor
, and
J.
Enderlein
, “
Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy
,”
Opt. Express
23
,
3770
3783
(
2015
).
6.
M.
Shang
,
Z.-L.
Huang
, and
Y.
Wang
, “
Influence of drift correction precision on super-resolution localization microscopy
,”
Appl. Opt.
61
,
3516
3522
(
2022
).
7.
P. D.
Dahlberg
,
A. M.
Sartor
,
J.
Wang
,
S.
Saurabh
,
L.
Shapiro
, and
W.
Moerner
, “
Identification of PAmKate as a red photoactivatable fluorescent protein for cryogenic super-resolution imaging
,”
J. Am. Chem. Soc.
140
,
12310
12313
(
2018
).
8.
S.
Coelho
,
J.
Baek
,
M. S.
Graus
,
J. M.
Halstead
,
P. R.
Nicovich
,
K.
Feher
,
H.
Gandhi
,
J. J.
Gooding
, and
K.
Gaus
, “
Ultraprecise single-molecule localization microscopy enables in situ distance measurements in intact cells
,”
Sci. Adv.
6
,
eaay8271
(
2020
).
9.
A.
Pertsinidis
,
Y.
Zhang
, and
S.
Chu
, “
Subnanometre single-molecule localization, registration and distance measurements
,”
Nature
466
,
647
651
(
2010
).
10.
B.
Liu
,
Y.
Xue
,
W.
Zhao
,
Y.
Chen
,
C.
Fan
,
L.
Gu
,
Y.
Zhang
,
X.
Zhang
,
L.
Sun
,
X.
Huang
,
W.
Ding
,
F.
Sun
,
W.
Ji
, and
T.
Xu
, “
Three-dimensional super-resolution protein localization correlated with vitrified cellular context
,”
Sci. Rep.
5
,
13017
(
2015
).
11.
S. H.
Lee
,
M.
Baday
,
M.
Tjioe
,
P. D.
Simonson
,
R.
Zhang
,
E.
Cai
, and
P. R.
Selvin
, “
Using fixed fiduciary markers for stage drift correction
,”
Opt. Express
20
,
12177
12183
(
2012
).
12.
H.
Ma
,
J.
Xu
,
J.
Jin
,
Y.
Huang
, and
Y.
Liu
, “
A simple marker-assisted 3D nanometer drift correction method for superresolution microscopy
,”
Biophys. J.
112
,
2196
2208
(
2017
).
13.
A.
Balinovic
,
D.
Albrecht
, and
U.
Endesfelder
, “
Spectrally red-shifted fluorescent fiducial markers for optimal drift correction in localization microscopy
,”
J. Phys. D: Appl. Phys.
52
,
204002
(
2019
).
14.
M. J.
Mlodzianoski
,
J. M.
Schreiner
,
S. P.
Callahan
,
K.
Smolková
,
A.
Dlasková
,
J.
Šantorová
,
P.
Ježek
, and
J.
Bewersdorf
, “
Sample drift correction in 3D fluorescence photoactivation localization microscopy
,”
Opt. Express
19
,
15009
15019
(
2011
).
15.
Y.
Wang
,
J.
Schnitzbauer
,
Z.
Hu
,
X.
Li
,
Y.
Cheng
,
Z.-L.
Huang
, and
B.
Huang
, “
Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm
,”
Opt. Express
22
,
15982
15991
(
2014
).
16.
A.-K.
Gustavsson
,
R. P.
Ghosh
,
P. N.
Petrov
,
J. T.
Liphardt
, and
W.
Moerner
, “
Fast and parallel nanoscale three-dimensional tracking of heterogeneous mammalian chromatin dynamics
,”
Mol. Biol. Cell
33
,
ar47
(
2022
).
17.
H.
Deschout
,
K.
Neyts
, and
K.
Braeckmans
, “
The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy
,”
J. Biophotonics
5
,
97
109
(
2012
).
18.
F.
Hinterer
,
M. C.
Schneider
,
S.
Hubmer
,
M.
López-Martinez
,
P.
Zelger
,
A.
Jesacher
,
R.
Ramlau
, and
G. J.
Schütz
, “
Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy
,”
PLoS One
17
,
e0263500
(
2022
).
19.
C. S.
Smith
,
N.
Joseph
,
B.
Rieger
, and
K. A.
Lidke
, “
Fast, single-molecule localization that achieves theoretically minimum uncertainty
,”
Nat. Methods
7
,
373
375
(
2010
).
20.
R.
Thompson
,
D.
Larson
, and
W.
Webb
, “
Precise nanometer localization analysis for individual fluorescent probes
,”
Biophys. J.
82
,
2775
2783
(
2002
).
21.
F.
Hinterer
and
M. C.
Schneider
(2023). “localizationFixedDipoles-motionFit,”
GitHub.
https://github.com/schuetzgroup/localizationFixedDipoles-motionFit

Supplementary Material

You do not currently have access to this content.