The synthetic gauge field, offering an excellent platform to explore some fascinating magnetic-like phenomena, has attracted extensive research. Here, we report the realization of a synthetic gauge field in acoustic Moiré superlattices consisting of two superimposed periodic phononic crystals with mismatched lattice constants along one direction. Benefiting from the synthetic gauge field, we observe the symmetric and antisymmetric Landau levels and interface states in the acoustic Moiré superlattices. We further experimentally measure sound pressure field distributions of Landau levels, which is consistent with the full-wave simulations. This study offers an extremely simple way to generate synthetic gauge fields in phononics and expand the avenues for manipulating sound waves that were previously inaccessible in traditional periodic acoustic systems.

1.
K. K.
Gomes
,
W.
Mar
,
W.
Ko
,
F.
Guinea
, and
H. C. J. N.
Manoharan
, “
Designer Dirac fermions and topological phases in molecular graphene
,”
Nature
483
,
306
(
2012
).
2.
F.
Guinea
,
M. I.
Katsnelson
, and
A.
Geim
, “
Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
,”
Nat. Phys.
6
,
30
(
2010
).
3.
N.
Levy
,
S.
Burke
,
K.
Meaker
,
M.
Panlasigui
,
A.
Zettl
,
F.
Guinea
,
A. C.
Neto
, and
M. F.
Crommie
, “
Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles
,”
Science
329
,
544
(
2010
).
4.
M. C.
Rechtsman
,
J. M.
Zeuner
,
A.
Tünnermann
,
S.
Nolte
,
M.
Segev
, and
A.
Szameit
, “
Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures
,”
Nat. Photonics
7
,
153
(
2013
).
5.
J.
Guglielmon
,
M.
Rechtsman
, and
M.
Weinstein
, “
Landau levels in strained two-dimensional photonic crystals
,”
Phys. Rev. A
103
,
013505
(
2021
).
6.
R.
Umucalılar
and
I.
Carusotto
, “
Artificial gauge field for photons in coupled cavity arrays
,”
Phys. Rev. A
84
,
043804
(
2011
).
7.
K.
Fang
,
Z.
Yu
, and
S.
Fan
, “
Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
,”
Nat. Photonics
6
,
782
(
2012
).
8.
K.
Fang
,
J.
Luo
,
A.
Metelmann
,
M. H.
Matheny
,
F.
Marquardt
,
A. A.
Clerk
, and
O.
Painter
, “
Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
,”
Nat. Phys.
13
,
465
(
2017
).
9.
M.
Hafezi
,
E. A.
Demler
,
M. D.
Lukin
, and
J. M.
Taylor
, “
Robust optical delay lines with topological protection
,”
Nat. Phys.
7
,
907
(
2011
).
10.
Z.
Yang
,
F.
Gao
,
Y.
Yang
, and
B.
Zhang
, “
Strain-induced gauge field and Landau levels in acoustic structures
,”
Phys. Rev. Lett.
118
,
194301
(
2017
).
11.
H.
Abbaszadeh
,
A.
Souslov
,
J.
Paulose
,
H.
Schomerus
, and
V.
Vitelli
, “
Sonic Landau levels and synthetic gauge fields in mechanical metamaterials
,”
Phys. Rev. Lett.
119
,
195502
(
2017
).
12.
X.
Wen
,
C.
Qiu
,
Y.
Qi
,
L.
Ye
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Acoustic Landau quantization and quantum-Hall-like edge states
,”
Nat. Phys.
15
,
352
(
2019
).
13.
M.
Yan
,
W.
Deng
,
X.
Huang
,
Y.
Wu
,
Y.
Yang
,
J.
Lu
,
F.
Li
, and
Z.
Liu
, “
Pseudomagnetic fields enabled manipulation of on-chip elastic waves
,”
Phys. Rev. Lett.
127
,
136401
(
2021
).
14.
C.
Brendel
,
V.
Peano
,
O. J.
Painter
, and
F.
Marquardt
, “
Pseudomagnetic fields for sound at the nanoscale
,”
Proc. Natl. Acad. Sci.
114
,
E3390
(
2017
).
15.
O.
Jamadi
,
E.
Rozas
,
G.
Salerno
,
M.
Milićević
,
T.
Ozawa
,
I.
Sagnes
,
A.
Lemaître
,
L. L.
Gratiet
,
A.
Harouri
, and
I.
Carusotto
, “
Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices
,”
Light: Sci. Appl.
9
,
144
(
2020
).
16.
M.
Bellec
,
C.
Poli
,
U.
Kuhl
,
F.
Mortessagne
, and
H.
Schomerus
, “
Observation of supersymmetric pseudo-Landau levels in strained microwave graphene
,”
Light: Sci. Appl.
9
,
146
(
2020
).
17.
V.
Peri
,
M.
Serra-Garcia
,
R.
Ilan
, and
S. D.
Huber
, “
Axial-field-induced chiral channels in an acoustic Weyl system
,”
Nat. Phys.
15
,
357
(
2019
).
18.
G.
Li
,
A.
Luican
,
J.
Lopes dos Santos
,
A.
Castro Neto
,
A.
Reina
,
J.
Kong
, and
E.
Andrei
, “
Observation of Van Hove singularities in twisted graphene layers
,”
Nat. Phys.
6
,
109
(
2010
).
19.
P.
San-Jose
,
J.
González
, and
F.
Guinea
, “
Non-Abelian gauge potentials in graphene bilayers
,”
Phys. Rev. Lett.
108
,
216802
(
2012
).
20.
X.
Liu
,
Z.
Hao
,
K.
Watanabe
,
T.
Taniguchi
,
B. I.
Halperin
, and
P.
Kim
, “
Interlayer fractional quantum Hall effect in a coupled graphene double layer
,”
Nat. Phys.
15
,
893
(
2019
).
21.
C. R.
Dean
,
L.
Wang
,
P.
Maher
,
C.
Forsythe
,
F.
Ghahari
,
Y.
Gao
,
J.
Katoch
,
M.
Ishigami
,
P.
Moon
, and
M.
Koshino
, “
Hofstadter's butterfly and the fractal quantum Hall effect in Moiré superlattices
,”
Nature
497
,
598
(
2013
).
22.
H.
Yoo
,
R.
Engelke
,
S.
Carr
,
S.
Fang
,
K.
Zhang
,
P.
Cazeaux
,
S. H.
Sung
,
R.
Hovden
,
A. W.
Tsen
, and
T.
Taniguchi
, “
Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene
,”
Nat. Mater.
18
,
448
(
2019
).
23.
T.
Hou
,
Y.
Ren
,
Y.
Quan
,
J.
Jung
,
W.
Ren
, and
Z.
Qiao
, “
Valley current splitter in minimally twisted bilayer graphene
,”
Phys. Rev. B
102
,
085433
(
2020
).
24.
B.
Liu
,
L.
Xian
,
H.
Mu
,
G.
Zhao
,
Z.
Liu
,
A.
Rubio
, and
Z.
Wang
, “
Higher-order band topology in twisted Moiré superlattice
,”
Phys. Rev. Lett.
126
,
066401
(
2021
).
25.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
(
2018
).
26.
Q.
Fu
,
P.
Wang
,
C.
Huang
,
Y. V.
Kartashov
,
L.
Torner
,
V. V.
Konotop
, and
F.
Ye
, “
Optical soliton formation controlled by angle twisting in photonic Moiré lattices
,”
Nat. Photonics
14
,
663
(
2020
).
27.
Y.
Deng
,
M.
Oudich
,
N. J.
Gerard
,
J.
Ji
,
M.
Lu
, and
Y.
Jing
, “
Magic-angle bilayer phononic graphene
,”
Phys. Rev. B
102
,
180304
(
2020
).
28.
K.
Dong
,
T.
Zhang
,
J.
Li
,
Q.
Wang
,
F.
Yang
,
Y.
Rho
,
D.
Wang
,
C. P.
Grigoropoulos
,
J.
Wu
, and
J.
Yao
, “
Flat bands in magic-angle bilayer photonic crystals at small twists
,”
Phys. Rev. Lett.
126
,
223601
(
2021
).
29.
B.
Lou
,
N.
Zhao
,
M.
Minkov
,
C.
Guo
,
M.
Orenstein
, and
S.
Fan
, “
Theory for twisted bilayer photonic crystal slabs
,”
Phys. Rev. Lett.
126
,
136101
(
2021
).
30.
M. R.
López
,
F.
Peñaranda
,
J.
Christensen
, and
P.
San-Jose
, “
Flat bands in magic-angle vibrating plates
,”
Phys. Rev. Lett.
125
,
214301
(
2020
).
31.
Z.
Jiang
,
J.
Liu
,
S.
Zheng
,
G.
Duan
, and
B.
Xia
, “
Phononic twisted Moiré lattice with quasicrystalline patterns
,”
Appl. Phys. Lett.
121
,
142202
(
2022
).
32.
H.
Tang
,
X.
Ni
,
F.
Du
,
V.
Srikrishna
, and
E.
Mazur
, “
On-chip light trapping in bilayer Moiré photonic crystal slabs
,”
Appl. Phys. Lett.
121
,
231702
(
2022
).
33.
F.
Zhang
,
A. H.
MacDonald
, and
E. J.
Mele
, “
Valley Chern numbers and boundary modes in gapped bilayer graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10546
(
2013
).
34.
S.
Zheng
,
J.
Zhang
,
G.
Duan
,
Z.
Jiang
,
X.
Man
,
D.
Yu
, and
B.
Xia
, “
Topological network and valley beam splitter in acoustic biaxially strained Moiré superlattices
,”
Phys. Rev. B
105
,
184104
(
2022
).
35.
D.
Marchenko
,
D.
Evtushinsky
,
E.
Golias
,
A.
Varykhalov
,
T.
Seyller
, and
O.
Rader
, “
Extremely flat band in bilayer graphene
,”
Sci. Adv.
4
,
eaau0059
(
2018
).
36.
P.
Wang
,
Y.
Zheng
,
X.
Chen
,
C.
Huang
,
Y. V.
Kartashov
,
L.
Torner
,
V. V.
Konotop
, and
F.
Ye
, “
Localization and delocalization of light in photonic Moiré lattices
,”
Nature
577
,
42
(
2020
).
37.
M. J.
Park
,
Y.
Kim
,
G. Y.
Cho
, and
S.
Lee
, “
Higher-order topological insulator in twisted bilayer graphene
,”
Phys. Rev. Lett.
123
,
216803
(
2019
).
38.
Z.
Liu
,
Z.
Du
,
B.
Hu
,
W.
Liu
,
J.
Liu
, and
Y.
Wang
, “
Wide-angle Moiré metalens with continuous zooming
,”
J. Opt. Soc. Am. B
36
,
2810
(
2019
).
39.
W.
Wang
,
W.
Gao
,
X.
Chen
,
F.
Shi
,
G.
Li
,
J.
Dong
,
Y.
Xiang
, and
S.
Zhang
, “
Moiré fringe induced gauge field in photonics
,”
Phys. Rev. Lett.
125
,
203901
(
2020
).
40.
K.
Von Klitzing
, “
The quantized Hall effect
,”
Rev. Mod. Phys.
58
,
519
(
1986
).

Supplementary Material

You do not currently have access to this content.