In conventional plasmonic media and plasmonic metamaterials, such as metallic wire meshes, a longitudinal mode of an electromagnetic wave manifests itself in frequency overlapping transverse modes, which impedes clear observation of longitudinal-mode-specific physical effects. Through interlacing two sets of wire meshes, an ideal band for the longitudinal mode is achieved ranging from zero frequency to plasma frequency, where transverse modes are completely forbidden. The unique spectral separation of modes facilitates the observation of pure longitudinal modes and related plasmonic effects in a bulk medium. We report the microwave experiment of anomalous optical transmission, induced solely by electromagnetic longitudinal mode resonance, below the plasma frequency in such a wire mesh medium.

1.
T. W.
Ebbesen
,
H. J.
Lezec
,
H. F.
Ghaemi
,
T.
Thio
, and
P. A.
Wolff
, “
Extraordinary optical transmission through subwavelength hole arrays
,”
Nature
391
,
667
669
(
1998
).
2.
D. R.
Smith
,
W. J.
Padilla
,
D. C.
Vier
,
S. C.
Nemat-Nasser
, and
S.
Schultz
, “
Composite medium with simultaneously negative permeability and permittivity
,”
Phys. Rev. Lett.
84
,
4184
(
2000
).
3.
J. B.
Pendry
,
L.
Martín-Moreno
, and
F. J.
Garcia-Vidal
, “
Mimicking surface plasmons with structured surfaces
,”
Science
305
,
847
(
2004
).
4.
A. P.
Hibbins
,
B. R.
Evans
, and
J. R.
Sambles
, “
Experimental verification of designer surface plasmons
,”
Science
308
,
670
(
2005
).
5.
W.
Fan
,
S.
Zhang
,
B.
Minhas
,
K. J.
Malloy
, and
S. R. J.
Brueck
, “
Enhanced infrared transmission through subwavelength coaxial metallic arrays
,”
Phys. Rev. Lett.
94
,
033902
(
2005
).
6.
J.
Shin
,
J.
Shen
,
P. B.
Catrysse
, and
S.
Fan
, “
Cut-through metal slit array as an anisotropic metamaterial film
,”
IEEE J. Sel. Top. Quantum Electron.
12
,
1116
(
2006
).
7.
W.
Wen
,
L.
Zhou
,
B.
Hou
,
C. T.
Chan
, and
P.
Sheng
, “
Resonant transmission of microwave through subwavelength fractal slits in a metallic plate
,”
Phys. Rev. B
72
,
153406
(
2005
).
8.
B.
Hou
,
H.
Wen
,
Y.
Leng
, and
W.
Wen
, “
Electromagnetic wave transmission through subwavelength metallic meshes sandwiched between split rings
,”
Appl. Phys. Lett.
87
,
201114
(
2005
).
9.
B.
Hou
,
Z. H.
Hang
,
W.
Wen
,
C. T.
Chan
, and
P.
Sheng
, “
Microwave transmission through metallic hole arrays: Surface electric field measurements
,”
Appl. Phys. Lett.
89
,
131917
(
2006
).
10.
Z.
Ruan
and
M.
Qiu
, “
Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances
,”
Phys. Rev. Lett.
96
,
233901
(
2006
).
11.
R.
Liu
,
Q.
Cheng
,
T.
Hand
,
J. J.
Mock
,
T. J.
Cui
,
S. A.
Cummer
, and
D. R.
Smith
, “
Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies
,”
Phys. Rev. Lett.
100
,
023903
(
2008
).
12.
B.
Edwards
,
A.
Alù
,
M. E.
Young
,
M.
Silveirinha
, and
N.
Engheta
, “
Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide
,”
Phys. Rev. Lett.
100
,
033903
(
2008
).
13.
A.
Alu
,
G.
D'Aguanno
,
N.
Mattiucci
, and
M. J.
Bloemer
, “
Plasmonic Brewster angle: Broadband extraordinary transmission through optical gratings
,”
Phys. Rev. Lett.
106
,
123902
(
2011
).
14.
R. H.
Fan
,
R. W.
Peng
,
X. R.
Huang
,
J.
Li
,
Y.
Liu
,
Q.
Hu
,
M.
Wang
, and
X.
Zhang
, “
Transparent metals for ultrabroadband electromagnetic waves
,”
Adv. Mater.
24
,
1980
(
2012
).
15.
C.
Qiu
,
S.
Li
,
R.
Chen
,
B.
Hou
,
F.
Li
, and
Z.
Liu
, “
Deep subwavelength electromagnetic transparency through dual metallic gratings with ultranarrow slits
,”
Phys. Rev. B
87
,
205129
(
2013
).
16.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwavelength optics
,”
Nature
424
,
824
830
(
2003
).
17.
F. J.
García de Abajo
, “
Light scattering by particle and hole arrays
,”
Rev. Mod. Phys.
79
,
1267
(
2007
).
18.
F. J.
Garcia-Vidal
,
L.
Martín-Moreno
,
T. W.
Ebbesen
, and
L.
Kuipers
, “
Light passing through subwavelength apertures
,”
Rev. Mod. Phys.
82
,
729
(
2010
).
19.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
, “
Metamaterials and negative refractive index
,”
Science
305
,
788
792
(
2004
).
20.
Y.
Liu
and
X.
Zhang
, “
Metamaterials: A new frontier of science and technology
,”
Chem. Soc. Rev.
40
,
2494
2507
(
2011
).
21.
T. J.
Cui
,
W. X.
Tang
,
X. M.
Yang
,
Z. L.
Mei
, and
W. X.
Jiang
,
Metamaterials: Beyond Crystals, Noncrystals, and Quasicrystals
(
CRC Press
,
2016
).
22.
M.
Kadic
,
G. W.
Milton
,
M.
van Hecke
, and
M.
Wegener
, “
3D metamaterials
,”
Nat. Rev. Phys.
1
,
198
210
(
2019
).
23.
J. B.
Pendry
,
A. J.
Holden
,
W. J.
Stewart
, and
I.
Youngs
, “
Extremely low frequency plasmons in metallic mesostructures
,”
Phys. Rev. Lett.
76
,
4773
(
1996
).
24.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
, “
Magnetism from conductors and enhanced non-linear phenomena
,”
IEEE Trans. Microwave Theory Techn.
47
,
2075
2084
(
1999
).
25.
H.
Latioui
and
M.
Silveririnha
, “
Light tuneling anomaly in interlaced metallic wire meshes
,”
Phys. Rev. B
96
,
195132
(
2017
).
26.
J.
Shin
,
J. T.
Shen
, and
S.
Fan
, “
Three-dimensional electromagnetic metamaterials that homogenize to uniform non-Maxwellian media
,”
Phys. Rev. B
76
,
113101
(
2007
).
27.
W.-J.
Chen
,
B.
Hou
,
Z.-Q.
Zhang
,
J. B.
Pendry
, and
C. T.
Chan
, “
Metamaterials with index ellipsoids at arbitrary K-points
,”
Nat. Commun.
9
,
2086
(
2018
).
28.
D.
Sakhno
,
E.
Koreshin
, and
P. A.
Belov
, “
Longitudinal electromagnetic waves with extremely short wavelength
,”
Phys. Rev. B
104
,
L100304
(
2021
).
29.
A. W.
Powell
,
R. C.
Mitchell-Thomas
,
S.
Zhang
,
D. A.
Cadman
,
A. P.
Hibbins
, and
J. R.
Sambles
, “
Dark mode excitation in three-dimensional interlaced metallic meshes
,”
ACS Photonics
8
,
841
(
2021
).
30.
N.
Kaina
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials
,”
Nature
525
,
77
(
2015
).
31.
X.
Wu
,
X.
Li
,
R.-Y.
Zhang
,
X.
Xiang
,
J.
Tian
,
Y.
Huang
,
S.
Wang
,
B.
Hou
,
C. T.
Chan
, and
W.
Wen
, “
Deterministic scheme for two-dimensional type-II Dirac points and experimental realization in acoustics
,”
Phys. Rev. Lett.
124
,
075501
(
2020
).

Supplementary Material

You do not currently have access to this content.