Recently, two-dimensional (2D) piezoelectric materials are widely studied, and the vertical piezoelectric properties of 2D materials are highly required to be known in the related theory research works and experiments, so it becomes very important to explore the intrinsic mechanism of piezoelectricity in the 2D materials. Herein, we systematically study the piezoelectricity of Janus C3HFX (X = Si and Ge) monolayers with semiconductor property, which are carbon-based 2D materials, using the first-principles calculation. The remarkable enhancements on the absolute values of the vertical piezoelectric coefficient of C3HFSi-1 (e33 = 11.27 × 10−10 C/m) and C3HFGe-4 (e33 = −12.78 × 10−10 C/m) are larger than that of C4HF (e33 = −2.28 × 10−10 C/m) by 5 and 6 times, respectively. It indicates that the atom replacement at appropriate positions in the multiatomic monolayer can significantly enhance the vertical piezoelectric properties based on the appropriate distribution of polarization charge. We define the concepts, the Born effective charges center (BECs-center) and the BECs-dipole-moment in this work, to explain these large vertical piezoelectric coefficients’ variation. The larger BECs-dipole-moment will enhance the vertical piezoelectricity for these C3HFX monolayers than that of the C4HF monolayer. These concepts defined in this work will deepen the understanding of the internal physical mechanism about the piezoelectricity.

1.
Nat. Nanotechnol.
5
(
11
),
755
(
2010
).
2.
X. Y.
Wang
,
Q. W.
He
,
D. S.
Tang
,
X.
Shang
, and
X. C.
Wang
,
ACS Appl. Nano Mater.
6
(
18
),
16221
(
2023
).
3.
N. G.
Ma
,
Y. J.
Zhang
,
H. N.
Zhang
,
H. M.
Mu
,
Y.
Zhang
, and
X. C.
Wang
,
Appl. Surf. Sci.
628
,
157315
(
2023
).
4.
Q. W.
He
,
Y.
Wu
,
C. H.
Yang
,
H. N.
Zhang
,
D. S.
Tang
,
X.
Shang
, and
X. C.
Wang
,
Nanoscale
15
(
24
),
10458
(
2023
).
5.
S.-Y.
Zhu
,
Y.-Q.
Li
,
X.-Y.
Wang
,
D.-S.
Tang
,
Q.-W.
He
,
C.
Liu
,
F.-C.
Liu
, and
X.-C.
Wang
,
Phys. E
145
,
115491
(
2023
).
6.
Y. Q.
Li
,
D. S.
Tang
,
Q. W.
He
,
X.
Shang
, and
X. C.
Wang
,
Appl. Phys. Lett.
122
(
19
),
193903
(
2023
).
7.
Y. Q.
Li
,
X. Y.
Wang
,
S. Y.
Zhu
,
D. S.
Tang
,
Q. W.
He
, and
X. C.
Wang
,
J. Phys. Chem. Lett.
13
(
41
),
9654
(
2022
).
8.
M. B.
Ghasemian
,
T.
Daeneke
,
Z.
Shahrbabaki
,
J.
Yang
, and
K.
Kalantar-Zadeh
,
Nanoscale
12
(
5
),
2875
(
2020
).
9.
Y. F.
Cheng
,
Y. A.
Ma
,
L. Y.
Li
,
M.
Zhu
,
Y.
Yue
,
W. J.
Liu
,
L. F.
Wang
,
S. F.
Jia
,
C.
Li
,
T. Y.
Qi
,
J. B.
Wang
, and
Y. H.
Gao
,
ACS Nano
14
(
2
),
2145
(
2020
).
10.
Y.
Chu
,
J. W.
Zhong
,
H. L.
Liu
,
Y.
Ma
,
N.
Liu
,
Y.
Song
,
J. M.
Liang
,
Z. C.
Shao
,
Y.
Sun
,
Y.
Dong
,
X. H.
Wang
, and
L. W.
Lin
,
Adv. Funct. Mater.
28
(
40
),
1803413
(
2018
).
11.
G. A.
Zhu
,
R. S.
Yang
,
S. H.
Wang
, and
Z. L.
Wang
,
Nano Lett.
10
(
8
),
3151
(
2010
);
[PubMed]
12.
H. N.
Zhang
,
Y.
Wu
,
C. H.
Yang
,
L. H.
Zhu
, and
X. C.
Wang
,
Phys. Rev. B
104
(
23
),
235437
(
2021
).
13.
M.
Noor-A-Alam
,
O.
Z. Olszewski
, and
M.
Nolan
,
ACS Appl. Mater. Interfaces
11
(
22
),
20482
(
2019
).
14.
Y. C.
Wang
,
X. Y.
Guo
,
L. H.
Li
,
J.
Zhang
,
G. K.
Li
,
A.
Zavabeti
, and
Y. X.
Li
,
ACS Appl. Nano Mater.
5
(
9
),
12126
(
2022
).
15.
X. Y.
Guo
,
C. K.
Nguyen
,
N.
Syed
,
A.
Ravindran
,
M. A.
Islam
,
T.
Filleter
,
K.
Cao
,
Y. C.
Wang
,
A.
Mazumder
,
C. L.
Xu
,
S.
Walia
,
M. B.
Ghasemian
,
K.
Kalantar-Zadeh
,
S. C.
Scholten
,
I. O.
Robertson
,
A. J.
Healey
,
J. P.
Tetienne
,
T.
Lu
,
Y.
Liu
,
A.
Elbourne
,
T.
Daeneke
,
A.
Holland
,
S. P.
Russo
,
Y. X.
Li
, and
A.
Zavabeti
, “Multi-functional atomically thin oxides from bismuth liquid metal,”
Adv. Funct. Mater.
(published online
2023
).
16.
Y. C.
Wang
,
A.
Zavabeti
,
Q. F.
Yao
,
T. L. C.
Tran
,
W. R.
Yang
,
L. X.
Kong
, and
D.
Cahill
,
ACS Appl. Mater. Interfaces
14
(
49
),
55285
(
2022
).
17.
D.
Singh
,
N.
Khossossi
,
W.
Luo
,
A.
Ainane
, and
R.
Ahuja
,
Mater. Today Adv.
14
,
100225
(
2022
).
18.
P. E.
Blochl
,
C. J.
Forst
, and
J.
Schimpl
,
Bull. Mater. Sci.
26
(
1
),
33
(
2003
).
19.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
(
20
),
14251
(
1994
).
20.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
22.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
(
7
),
1456
(
2011
).
23.
L. F.
Huang
,
P. L.
Gong
, and
Z.
Zeng
,
Phys. Rev. B
91
(
20
),
205433
(
2015
).
24.
X.
Wu
,
D.
Vanderbilt
, and
D. R.
Hamann
,
Phys. Rev. B
72
(
3
),
035105
(
2005
).
25.
N. N.
Hieu
,
H. V.
Phuc
,
A. I.
Kartamyshev
, and
T. V.
Vu
,
Phys. Rev. B
105
(
7
),
075402
(
2022
).
26.
M.
Yagmurcukardes
and
F. M.
Peeters
,
Phys. Rev. B
101
(
15
),
155205
(
2020
).
27.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jonsson
,
Comput. Mater. Sci.
36
(
3
),
354
(
2006
).
28.
O.
Bistoni
,
P.
Barone
,
E.
Cappelluti
,
L.
Benfatto
, and
F.
Mauri
,
2D Mater.
6
(
4
),
045015
(
2019
).
29.
R. M.
Pick
,
M. H.
Cohen
, and
R. M.
Martin
,
Phys. Rev. B
1
(
2
),
910
(
1970
).
30.
M. Y.
Zamil
,
M. S.
Islam
,
C.
Stampfl
, and
J.
Park
,
ACS Appl. Mater. Interfaces
14
(
18
),
20856
(
2022
).
31.
Y. C.
Wang
,
L. M.
Vu
,
T.
Lu
,
C. L.
Xu
,
Y.
Liu
,
J. Z.
Ou
, and
Y. X.
Li
,
ACS Appl. Mater. Interfaces
12
(
46
),
51662
(
2020
).
32.
P.
Nandi
,
A.
Rawat
,
R.
Ahammed
,
N.
Jena
, and
A.
De Sarkar
,
Nanoscale
13
(
10
),
5460
(
2021
).

Supplementary Material

You do not currently have access to this content.