Efficient acoustic communication across the water–air interface has always been expected in the field of ocean exploration. However, the existing research works are mainly concentrated on the narrow-band transmission based on resonance, which greatly limits the transmission capacity and efficiency. Here, we combined air-based and water-based metafluids to realize an exponential gradient impedance matching layer for broadband water–air sound transmission. By cooperatively adjusting the sound velocity and thickness in the matching layers, we modulated the required acoustic parameters of each layer into a reasonable range, which can be conveniently achieved by the proposed metafluids. A matching layer sample was constructed and validated in a water tank. Experimental results show that the proposed matching layer can achieve an average sound energy transmission enhancement above 16.7 dB from 880 to 1760 Hz across the water–air interface. A water–air acoustic communication scene was further experimentally demonstrated through transmitting a multicolor picture from air to water, which shows extremely high communication capacity and accuracy. Our work is promising for more applications based on water-air transmission and opens an avenue to the design and implementation of the extreme impedance matching case.

1.
T.
Qiu
,
Z.
Zhao
,
T.
Zhong
,
C.
Chen
, and
C. L.
Philip Chen
,
IEEE Trans. Ind. Inf.
16
,
4297
4307
(
2020
).
2.
Z.
Sun
,
H. Z.
Guo
, and
I. F.
Akyildiz
,
IEEE Commun. Mag.
60
,
96
102
(
2022
).
3.
M. J.
Buckingham
,
E. M.
Giddens
,
F.
Simonet
, and
T. R.
Hahn
,
J. Comp. Acous.
10
,
445
464
(
2002
).
4.
Y.
Liu
,
D.
Habibi
,
D.
Chai
,
X.
Wang
,
H.
Chen
,
Y.
Gao
, and
S.
Li
,
Appl. Sci.
10
,
1031
(
2020
).
5.
R.
Williams
,
C.
Erbe
,
A.
Duncan
,
K.
Nielsen
,
T.
Washburn
, and
C.
Smith
,
Science
377
,
157
158
(
2022
).
6.
L. N.
Frazer
and
E.
Mercado
,
IEEE J. Oceanic Eng.
25
,
160
182
(
2000
).
7.
D. A.
Croll
,
C. W.
Clark
,
A.
Acevedo
,
B.
Tershy
,
S.
Flores
,
J.
Gedamke
, and
J.
Urbang
,
Nature
417
,
809
(
2002
).
8.
T. G.
Leighton
,
J. Acoust. Soc. Am.
131
,
2539
(
2012
).
9.
E.
Bok
,
J. J.
Park
,
H.
Choi
,
C. K.
Han
,
O. B.
Wright
, and
S. H.
Lee
,
Phys. Rev. Lett.
120
,
044302
(
2018
).
10.
Z.
Huang
,
S.
Zhao
,
Y.
Zhang
,
Z.
Cai
,
Z.
Li
,
J.
Xiao
,
M.
Su
,
Q.
Guo
,
C.
Zhang
,
Y.
Pan
,
X.
Cai
,
Y.
Song
, and
J.
Yang
,
Research
2021
,
9757943
.
11.
Z.
Cai
,
S.
Zhao
,
Z.
Huang
,
Z.
Li
,
M.
Su
,
Z.
Zhang
,
Z.
Zhao
,
X.
Hu
,
Y.
Wang
, and
Y.
Song
,
Adv. Funct. Mater.
29
,
1906984
(
2019
).
12.
Z.
Huang
,
Z.
Zhao
,
S.
Zhao
,
X.
Cai
,
Y.
Zhang
,
Z.
Cai
,
H.
Li
,
Z.
Li
,
M.
Su
,
C.
Zhang
,
Y.
Pan
,
Y.
Song
, and
J.
Yang
,
ACS Appl. Mater. Interfaces
13
,
53242
(
2021
).
13.
H. T.
Zhou
,
S. C.
Zhang
,
T.
Zhou
,
Y. Z.
Tian
,
Y. F.
Wang
, and
Y. S.
Wang
,
Adv. Sci.
10
,
2207181
(
2023
).
14.
J. J.
Liu
,
Z. W.
Li
,
B.
Liang
,
J. C.
Cheng
, and
A.
Alu
, arXiv:2208.12999 (
2022
).
15.
H.
Zhang
,
Z.
Wei
,
L.
Fan
,
J.
Qu
, and
S.
Zhang
,
Sci. Rep.
6
,
34688
(
2016
).
16.
T.
Lee
and
H.
Iizuka
,
Phys. Rev. B
102
,
104105
(
2020
).
17.
P. C.
Pederse
,
O.
Tretiak
, and
P.
He
,
J. Acoust. Soc. Am.
72
,
327
336
(
1982
).
18.
K.
Pendergraft
,
J. Acoust. Soc. Am.
94
,
580
582
(
1993
).
19.
Y. W.
Feng
,
J.
Qiao
, and
L. Q.
Li
,
Mater. Des.
193
,
108870
(
2020
).
20.
E.
Dong
,
Z.
Song
,
Y.
Zhang
,
S. G.
Mosanenzadeh
,
Q.
He
,
X.
Zhao
, and
N. X.
Fang
,
Sci. Adv.
6
,
eabb3641
(
2020
).
21.
G. K.
Lewis
, in
Acoustical Imaging
(
Springer
,
1980
), Vol. 8, pp.
395
416
.
22.
F.
Cervera
,
L.
Sanchis
,
J. V.
Sánchez-Pérez
,
R.
Martínez-Sala
,
C.
Rubio
, and
F.
Meseguer
,
Phys. Rev. Lett.
88
,
023902
(
2001
).
23.
D.
Torrent
,
A.
Hakansson
,
F.
Cervera
, and
J.
Sánchez-Dehesa
,
Phys. Rev. Lett.
96
,
204302
(
2006
).
24.
D.
Torrent
and
J.
Sánchez-Dehesa
,
Phys. Rev. B
74
,
224305
(
2006
).
25.
B. I.
Popa
and
S. A.
Cummer
,
Phys. Rev. B
80
,
174303
(
2009
).
26.
27.
K.
Zhang
,
C.
Ma
,
Q.
He
,
S.
Lin
,
Y.
Chen
,
Y.
Zhang
,
N. X.
Fang
, and
X.
Zhao
,
Adv. Funct. Mater.
29
,
1903699
(
2019
).
28.
E.
Dong
,
P.
Cao
,
J.
Zhang
,
S.
Zhang
,
N. X.
Fang
, and
Y.
Zhang
,
Natl. Sci. Rev.
10
,
nwac246
(
2023
).
29.
Y.
Bi
,
P.
Zhou
,
H.
Jia
,
F.
Lu
,
Y.
Yang
,
P.
Zhang
, and
J.
Yang
, arXiv:2304.07758 (
2023
).
30.
A.
Climente
,
D.
Torrent
, and
J.
Sánchez-Dehesa
,
Appl. Phys. Lett.
97
,
104103
(
2010
).
31.
T. P.
Martin
,
C. J.
Naify
,
E. A.
Skerritt
,
C. N.
Layman
,
M.
Nicholas
,
D. C.
Calvo
, and
G. J.
Orris
,
Phys. Rev. Appl.
4
,
034003
(
2015
).
32.
L.
Zigoneanu
,
B. I.
Popa
, and
S. A.
Cummer
,
Phys. Rev. B
84
,
024305
(
2011
).
33.
Y.
Jin
,
B.
Djafari-Rouhani
, and
D.
Torrent
,
Nanophotonics
8
,
685
701
(
2019
).
34.
L.
Zigoneanu
,
B. I.
Popa
, and
S. A.
Cummer
,
Nat. Mater.
13
,
352
(
2014
).
35.
Y.
Bi
,
H.
Jia
,
W.
Lu
,
P.
Ji
, and
J.
Yang
,
Sci. Rep.
7
,
705
(
2017
).
36.
P. A.
Kerrian
,
A. D.
Hanford
,
D. E.
Capone
, and
B. S.
Beck
,
J. Acoust. Soc. Am.
146
,
2303
(
2019
).
37.
P.
Zhou
,
H.
Jia
,
Y.
Bi
,
B.
Liao
,
Y.
Yang
,
K.
Yan
,
J.
Zhang
, and
J.
Yang
,
Phys. Rev. Appl.
18
,
014050
(
2022
).

Supplementary Material

You do not currently have access to this content.