Diatom frustules, the intricately structured algal silica exoskeletons, have remarkable mechanical properties and so are ideal candidates for various engineering applications. This study presents a comprehensive investigation of the eigenmode resonance frequencies of diatom frustules through the combination of in silico and experimental characterization. The predictions for the diatom resonance frequencies in the range of 1–8 MHz, which were made by COMSOL Multiphysics, were experimentally validated using the optical detection system of the atomic force microscope. Precise measurement of the resonance frequencies of thin miniature shells, such as diatom frustules, is pivotal in enabling their use for vibration-based sensing and optimal design of diatom-inspired micro-electro-mechanical system devices, which can facilitate effective energy absorption, vibration damping, and highly sensitive detection.

1.
J.
Pan
,
J.
Cai
,
D.
Zhang
,
Y.
Wang
, and
Y.
Jiang
, “
Micro-arraying of nanostructured diatom microshells on glass substrate using ethylene-vinyl acetate copolymer and photolithography technology for fluorescence spectroscopy application
,”
Physica E
44
,
1585
1591
(
2012
).
2.
E.
De Tommasi
,
I.
Rea
,
L.
De Stefano
et al, “
Optics with diatoms: Towards efficient, bioinspired photonic devices at the micro-scale
,”
Proc. SPIE
8792
,
87920O
(
2013
).
3.
C.
Jeffryes
,
J.
Campbell
,
H.
Li
,
J.
Jiao
, and
G.
Rorrer
, “
The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices
,”
Energy Environ. Sci.
4
,
3930
3941
(
2011
).
4.
J.
Parkinson
and
R.
Gordon
, “
Beyond micromachining: The potential of diatoms
,”
Trends Biotechnol.
17
,
190
196
(
1999
).
5.
A. M.
Korsunsky
,
Y. D.
Bedoshvili
,
J.
Cvjetinovic
et al, “
Siliceous diatom frustules—A smart nanotechnology platform
,”
Mater. Today Proc.
33
,
2032
2040
(
2020
).
6.
J.
Cvjetinovic
,
S. Y.
Luchkin
,
E. S.
Statnik
et al, “
Revealing the static and dynamic nanomechanical properties of diatom frustules-Nature's glass lace
,”
Sci. Rep.
13
,
5518
(
2023
).
7.
A. I.
Salimon
,
J.
Cvjetinovic
,
Y.
Kan
et al, “
On the mathematical description of diatom algae: From siliceous exoskeleton structure and properties to colony growth kinetics, and prospective nanoengineering applications
,” in
The Mathematical Biology of Diatoms
(
Scrivener Publishing LLC
,
USA
,
2023
), pp.
63
103
.
8.
B.
Abdusatorov
,
A. I.
Salimon
,
Y. D.
Bedoshvili
,
Y. V.
Likhoshway
, and
A. M.
Korsunsky
, “
FEM exploration of the potential of silica diatom frustules for vibrational MEMS applications
,”
Sens. Actuators A
315
,
112270
(
2020
).
9.
M.
Simovic-Pavlovic
,
B.
Bokic
,
D.
Vasiljevic
, and
B.
Kolaric
, “
Bioinspired NEMS—Prospective of collaboration with nature
,”
Appl. Sci. (Switzerland)
12
,
905
(
2022
).
10.
C. H.
Je
,
J.
Lee
,
W. S.
Yang
,
J.
Kim
, and
Y. H.
Cho
, “
A surface-micromachined capacitive microphone with improved sensitivity
,”
J. Micromech. Microeng.
23
,
055018
(
2013
).
11.
W. J.
Westerveld
,
M.
Mahmud-Ul-Hasan
,
R.
Shnaiderman
et al, “
Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics
,”
Nat. Photonics
15
,
341
345
(
2021
).
12.
E.
De Tommasi
and
A. C.
De Luca
, “
Diatom biosilica in plasmonics: Applications in sensing, diagnostics and therapeutics
,”
Biomed. Opt. Express
13
,
3080
(
2022
).
13.
A.
Rogato
and
E.
De Tommasi
, “
Physical, chemical, and genetic techniques for diatom frustule modification: Applications in nanotechnology
,”
Appl. Sci. (Switzerland)
10
(
1–23
),
8738
(
2020
).
14.
P. K.
Joshi
, “
Reliability study of MEMS resonator: A review
,”
J. Phys.: Conf. Ser.
2325
,
012013
(
2022
).
15.
F. J.
Ibarra-Villegas
,
S.
Ortega-Ciscneros
,
P.
Moreno
et al, “
Analysis of MEMS structures to identify their frequency response oriented to acoustic applications
,”
Superficies Vacio
28
,
12
17
(
2015
).
16.
S.
Tang
,
H.
Liu
,
S.
Yan
et al, “
A high-sensitivity MEMS gravimeter with a large dynamic range
,”
Microsyst. Nanoeng.
5
,
45
(
2019
).
17.
A. L.
Herrera-May
,
L. A.
Aguilera-Cortés
,
P. J.
García-Ramírez
, and
E.
Manjarrez
, “
Resonant magnetic field sensors based on MEMS technology
,”
Sensors
9
,
7785
7813
(
2009
).
18.
I. G.
Mina
,
H.
Kim
,
I.
Kim
et al, “
High frequency piezoelectric MEMS ultrasound transducers
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
,
2422
2429
(
2007
).
19.
S. A.
Zawawi
,
A. A.
Hamzah
,
B. Y.
Majlis
, and
F.
Mohd-Yasin
, “
A review of MEMS capacitive microphones
,”
Micromachines
11
,
484
(
2020
).
20.
S.
Andresen
,
A.
Bäger
, and
C.
Hamm
, “
Eigenfrequency maximisation by using irregular lattice structures
,”
J. Sound Vib.
465
,
115027
(
2020
).
21.
E.
Ackerman
, “
Resonances of biological cells at audible frequencies
,”
Bull. Math. Biophys.
13
,
93
106
(
1951
).
22.
P. V.
Zinin
,
J. S.
Allen
, and
V. M.
Levin
, “
Mechanical resonances of bacteria cells
,”
Phys. Rev. E
72
,
061907
(
2005
).
23.
P. V.
Zinin
and
J. S.
Allen
, “
Deformation of biological cells in the acoustic field of an oscillating bubble
,”
Phys. Rev. E
79
,
021910
(
2009
).
24.
L. H.
Ford
, “
Estimate of the vibrational frequencies of spherical virus particles
,”
Phys. Rev. E
67
,
051924
(
2003
).
25.
D. K.
Miller
, “
Effects of a high-amplitude l-MHz standing ultrasonic field on the algae hydrodictyon
,”
IEEE Trans. Ultrason., Ferroelectr., Freq.. Control
33
,
165
170
(
1986
).
26.
L.
Friedrichs
,
M.
Maier
, and
C.
Hamm
, “
A new method for exact three-dimensional reconstructions of diatom frustules
,”
J. Microsc.
248
,
208
217
(
2012
).
27.
A.
Gutiérrez
,
R.
Gordon
, and
L. P.
Dávila
, “
Deformation modes and structural response of diatom frustules
,”
J. Mater. Sci. Eng.
15
,
105
134
(
2017
).
28.
A.
Gutiérrez
,
M. G.
Guney
,
G. K.
Fedder
, and
L. P.
Dávila
, “
The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures: Via simulation
,”
Biomater. Sci.
6
,
146
153
(
2018
).
29.
R.
Gordon
and
M. A.
Tiffany
,
Possible Buckling Phenomena in Diatom Morphogenesis in the Diatom World
(
Springer Netherlands
,
2011
), pp.
245
271
.
30.
V.
Annenkov
,
J.
Seckback
, and
R.
Gordon
,
Diatom Morphogenesis
(
Scrivener Publishing LLC
,
USA
,
2021
).
31.
J.
Pappas
,
Quantified Ensemble 3D Surface Features Modeled as a Window on Centric Diatom Valve Morphogenesis in Diatom Morphogenesis
(
Scrivener Publishing LLC
,
USA
,
2021
), pp.
159
194
.
32.
J.
Pappas
and
R.
Gordon
, “
Buckling: A geometric and biophysical multiscale feature of centric diatom valve morphogenesis
,” in
Diatom Morphogenesis
(
Scrivener Publishing LLC
,
USA
,
2021
), pp.
195
231
.
33.
J.
Cvjetinovic
,
A. I.
Salimon
,
M. V.
Novoselova
et al, “
Photoacoustic and fluorescence lifetime imaging of diatoms
,”
Photoacoustics
18
,
100171
(
2020
).
34.
F.
Maass
,
P.
Martin
, and
J.
Olivares
, “
Analytic approximation to Bessel function J(x)
,”
Comput. Appl. Math.
39
,
222
(
2020
).
35.
F. E.
Round
,
R. M.
Crawford
, and
D. G.
Mann
,
The Diatoms: Biology and Morphology of the Genera
(
Cambridge University Press
,
1990
), p.
747
.
36.
M. A.
Shah
,
I. A.
Shah
,
D. G.
Lee
, and
S.
Hur
, “
Design approaches of MEMS microphones for enhanced performance
,”
J. Sens.
2019
,
9294528
.
37.
M. D.
Williams
,
B. A.
Griffin
,
T. N.
Reagan
,
J. R.
Underbrink
, and
M.
Sheplak
, “
An AlN MEMS piezoelectric microphone for aeroacoustic applications
,”
J. Microelectromech. Syst.
21
,
270
283
(
2012
).
38.
T.
Fukuma
,
M.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
, “
Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy
,”
Rev. Sci. Instrum.
76
,
053704
(
2005
).
39.
Q.
Huang
,
F.
Zhao
,
J.
Xie
et al, “
Numerical approach based on two-dimensional fractional-order Legendre functions for solving fractional differential equations
,”
Discrete Dyn. Nat. Soc.
2017
,
8630895
.
40.
P.
Khaneh Masjedi
and
A.
Maheri
, “
Chebyshev collocation method for the free vibration analysis of geometrically exact beams with fully intrinsic formulation
,”
Eur. J. Mech. A
66
,
329
340
(
2017
).
41.
J.
Xie
, “
Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis
,”
Math. Methods Appl. Sci.
44
,
7150
7164
(
2021
).
42.
C. E.
Hamm
,
R.
Merkel
,
O.
Springer
et al, “
Architecture and material properties of diatom shells provide effective mechanical protection
,”
Nature
421
,
841
843
(
2003
).
43.
E.
De Tommasi
,
J.
Gielis
, and
A.
Rogato
, “
Diatom frustule morphogenesis and function: A multidisciplinary survey
,”
Mar. Genomics
35
,
1
18
(
2017
).
44.
Z. H.
Aitken
,
S.
Luo
,
S. N.
Reynolds
,
C.
Thaulow
, and
J. R.
Greer
, “
Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
8
),
2017
(
2016
).
45.
J.
Yoon
,
M. H.
Kwon
,
D. H.
Shin
, and
S. W.
Lee
, “
Mechanical resonance properties of porous graphene membrane; simulation study and proof of concept experiment
,”
Curr. Appl. Phys.
23
,
30
35
(
2021
).
46.
O.
Darouich
,
W.
Baaziz
,
D.
Ihiawakrim
et al, “
3D multiscale analysis of the hierarchical porosity in Coscinodiscus sp. diatoms using a combination of tomographic techniques
,”
Nanoscale Adv.
4
,
1587
1598
(
2022
).
47.
D.
Losic
,
G.
Rosengarten
,
J. G.
Mitchell
, and
N. H.
Voelcker
, “
Pore architecture of diatom frustules: Potential nanostructured membranes for molecular and particle separations
,”
J. Nanosci. Nanotechnol.
6
,
982
989
(
2006
).
48.
S. S.
Dixit
,
J. P.
Smol
,
J. C.
Kingston
, and
D. F.
Charles
, “
Diatoms: Powerful indicators of environmental change
,”
Environ. Sci. Technol.
26
,
22
33
(
1992
).
49.
A.
Vilmi
,
S. M.
Karjalainen
,
V. L.
Landeiro
, and
J.
Heino
, “
Freshwater diatoms as environmental indicators: Evaluating the effects of eutrophication using species morphology and biological indices
,”
Environ. Monit. Assess.
187
,
243
(
2015
).
50.
P.
Aggrey
,
B.
Abdusatorov
,
Y.
Kan
et al, “
In situ formation of nanoporous silicon on a silicon wafer via the magnesiothermic reduction reaction (MRR) of diatomaceous earth
,”
Nanomaterials
10
,
601
(
2020
).
51.
Y.
Lang
,
F.
del Monte
,
B. J.
Rodriguez
et al, “
Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis
,”
Sci. Rep.
3
,
3205
(
2013
).
52.
S. L.
Polyakova
,
O. I.
Davidovich
,
Y. A.
Podunay
, and
N. A.
Davidovich
, “
Modification of the ESAW culture medium used for cultivation of marine diatoms
,”
Mar. Biol. J.
3
,
73
80
(
2018
).
53.
J.
Lu
,
C.
Sun
, and
Q. J.
Wang
, “
Mechanical simulation of a diatom frustule structure
,”
J. Bionic Eng.
12
,
98
108
(
2015
).

Supplementary Material

You do not currently have access to this content.