A vanadium diselenide (VSe2) monolayer is a two-dimensional (2D) magnetic material that exhibits ferromagnetic ordering at room temperature and exceptional metal-ion storage capacity, making it useful in spintronics and energy storage applications. However, a robust correlation between the magnetic and electrochemical properties of VSe2 remains to be established. In this study, first-principles density functional theory calculations were performed to investigate the effect of increasing Li-ion concentrations on the magnetic properties, particularly the magnetic ground state of the VSe2 monolayer. The results indicate that, as the concentration of Li ions on the surface of VSe2 monolayer increases, magnetic phase transitions occur, leading to a shift from the intrinsic ferromagnetic (FM) state to antiferromagnetic (AFM) and non-magnetic ground states. Analyses of the diffusion properties of ferromagnetic and antiferromagnetic VSe2 monolayers revealed a considerable (∼71%) increase in the Li-ion diffusion energy barrier for the AFM state compared to the FM state. This implies that FM-VSe2 facilitates relatively faster diffusion of Li ions than AFM-VSe2. Therefore, the Li-ion concentration-induced phase change in the VSe2 monolayer leads to variable adsorption and diffusion characteristics, which will have significant implications for its use in Li-ion battery anodes.

1.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
712
(
2012
).
2.
N.
Zibouche
,
P.
Philipsen
,
A.
Kuc
, and
T.
Heine
, “
Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications
,”
Phys. Rev. B
90
,
125440
(
2014
).
3.
L.
Lin
,
W.
Lei
,
S.
Zhang
,
Y.
Liu
,
G. G.
Wallace
, and
J.
Chen
, “
Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries
,”
Energy Storage Mater
19
,
408
423
(
2019
).
4.
Y.
Bahari
,
B.
Mortazavi
,
A.
Rajabpour
,
X.
Zhuang
, and
T.
Rabczuk
, “
Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations
,”
Energy Storage Mater.
35
,
203
282
(
2021
).
5.
M.
Pumera
,
Z.
Sofer
, and
A.
Ambrosi
, “
Layered transition metal dichalcogenides for electrochemical energy generation and storage
,”
J. Mater. Chem. A
2
,
8981
8987
(
2014
).
6.
Y.
Huang
,
Y.-H.
Pan
,
R.
Yang
,
L.-H.
Bao
,
L.
Meng
,
H.-L.
Luo
,
Y.-Q.
Cai
,
G.-D.
Liu
,
W.-J.
Zhao
,
Z.
Zhou
et al, “
Universal mechanical exfoliation of large-area 2D crystals
,”
Nat. Commun.
11
,
2453
(
2020
).
7.
K.-G.
Zhou
,
N.-N.
Mao
,
H.-X.
Wang
,
Y.
Peng
, and
H.-L.
Zhang
, “
A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues
,”
Angew. Chem., Int. Ed.
50
,
10839
10842
(
2011
).
8.
Z.
Zeng
,
Z.
Yin
,
X.
Huang
,
H.
Li
,
Q.
He
,
G.
Lu
,
F.
Boey
, and
H.
Zhang
, “
Single-layer semiconducting nanosheets: High-yield preparation and device fabrication
,”
Angew. Chem.
123
,
11289
11293
(
2011
).
9.
Z.
Gong
,
G.-B.
Liu
,
H.
Yu
,
D.
Xiao
,
X.
Cui
,
X.
Xu
, and
W.
Yao
, “
Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers
,”
Nat. Commun.
4
,
2053
(
2013
).
10.
K.
Dolui
,
A.
Narayan
,
I.
Rungger
, and
S.
Sanvito
, “
Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions
,”
Phys. Rev. B
90
,
041401
(
2014
).
11.
Y.
Zhou
,
Z.
Wang
,
P.
Yang
,
X.
Zu
,
L.
Yang
,
X.
Sun
, and
F.
Gao
, “
Tensile strain switched ferromagnetism in layered NbS2 and NbSe2
,”
ACS Nano
6
,
9727
9736
(
2012
).
12.
P.
Manchanda
,
V.
Sharma
,
H.
Yu
,
D. J.
Sellmyer
, and
R.
Skomski
, “
Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation
,”
Appl. Phys. Lett.
107
,
032402
(
2015
).
13.
Y.
Zhou
,
C.
Yang
,
X.
Xiang
, and
X.
Zu
, “
Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides
,”
Phys. Chem. Chem. Phys.
15
,
14202
14209
(
2013
).
14.
J.
Sun
,
X.
Jia
,
Y.
Wang
, and
J.
Zhang
, “
Strain-tunable magnetic transition in few-layer 1T-VSe2
,”
Appl. Phys. Lett.
121
,
072402
(
2022
).
15.
M.
Esters
,
R. G.
Hennig
, and
D. C.
Johnson
, “
Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers
,”
Phys. Rev. B
96
,
235147
(
2017
).
16.
M.
Salavati
and
T.
Rabczuk
, “
Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na-,and Ca-ion storage
,”
Comput. Mater. Sci.
160
,
360
367
(
2019
).
17.
M.
Blei
,
J.
Lado
,
Q.
Song
,
D.
Dey
,
O.
Erten
,
V.
Pardo
,
R.
Comin
,
S.
Tongay
, and
A.
Botana
, “
Synthesis, engineering, and theory of 2D van der Waals magnets
,”
Appl. Phys. Rev.
8
,
021301
(
2021
).
18.
M.
Bonilla
,
S.
Kolekar
,
Y.
Ma
,
H. C.
Diaz
,
V.
Kalappattil
,
R.
Das
,
T.
Eggers
,
H. R.
Gutierrez
,
M.-H.
Phan
, and
M.
Batzill
, “
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
,”
Nat. Nanotechnol.
13
,
289
293
(
2018
).
19.
J.
Jiang
,
R.
Li
, and
W.
Mi
, “
Exchange interactions in the 1T-VSe2 monolayer and their modulation via electron doping using alkali metal adsorption and the electride substrate
,”
Mater. Horiz.
9
,
2785
2796
(
2022
).
20.
Q.
Cao
,
F. F.
Yun
,
L.
Sang
,
F.
Xiang
,
G.
Liu
, and
X.
Wang
, “
Defect introduced paramagnetism and weak localization in two-dimensional metal VSe2
,”
Nanotechnology
28
,
475703
(
2017
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
22.
S.
Smidstrup
,
T.
Markussen
,
P.
Vancraeyveld
,
J.
Wellendorff
,
J.
Schneider
,
T.
Gunst
,
B.
Verstichel
,
D.
Stradi
,
P. A.
Khomyakov
,
U. G.
Vej-Hansen
et al, “
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
,”
J. Phys.: Condens. Matter
32
,
015901
(
2019
).
23.
J. R.
Chelikowsky
and
S. G.
Louie
, “
First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: Application to diamond
,”
Phys. Rev. B
29
,
3470
(
1984
).
24.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
25.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PU
,”
J. Chem. Phys.
132
,
154104
(
2010
).
26.
A.
Nair
,
P.
Kumari
,
M. V.
Kamalakar
, and
S.
Ray
, “
Dramatic magnetic phase designing in phosphorene
,”
Phys. Chem. Chem. Phys.
21
,
23713
23719
(
2019
).
27.
A.
Nair
,
S.
Rani
,
M. V.
Kamalakar
, and
S. J.
Ray
, “
Bi-stimuli assisted engineering and control of magnetic phase in monolayer CrOCl
,”
Phys. Chem. Chem. Phys.
22
,
12806
12813
(
2020
).
28.
A.
Taheri
,
C.
Da Silva
, and
C. H.
Amon
, “
First-principles phonon thermal transport in graphene: Effects of exchange-correlation and type of pseudopotential
,”
J. Appl. Phys.
123
,
215105
(
2018
).
29.
A.
Nair
,
C.
Da Silva
, and
C.
Amon
, “
Tuning the adsorption and diffusion capabilities of titanium disulfide monolayers by doping and strain engineering: Implications for lithium-ion batteries
,”
Appl. Surf. Sci.
600
,
154164
(
2022
).
30.
A.
Nair
,
C.
Da Silva
, and
C.
Amon
, “
Dopant-enhanced sodium and potassium-ion adsorption and diffusion in two-dimensional titanium disulfide
,”
J. Appl. Phys.
133
,
064302
(
2023
).
31.
A.
K. Nair
,
C.
Da Silva
, and
C.
Amon
, “
Enhanced alkali-ion adsorption in strongly bonded two-dimensional TiS2/MoS2 van der Waals heterostructures
,”
J. Phys. Chem. C
127
,
9541
(
2023
).
32.
M.
Luo
,
Y.
Li
,
K.
Wang
, and
Y.
Shen
, “
Adsorption induced magnetic anisotropy in the two-dimensional magnet CrCl3
,”
Solid State Commun.
321
,
114048
(
2020
).
33.
S.
Jiang
,
L.
Li
,
Z.
Wang
,
K. F.
Mak
, and
J.
Shan
, “
Controlling magnetism in 2D CrI3 by electrostatic doping
,”
Nat. Nanotechnol.
13
,
549
553
(
2018
).
34.
X.
Huang
,
J.
Xu
,
R.
Zeng
,
Q.
Jiang
,
X.
Nie
,
C.
Chen
,
X.
Jiang
, and
J.-M.
Liu
, “
Li-ion intercalation enhanced ferromagnetism in van der Waals Fe3GeTe2 bilayer
,”
Appl. Phys. Lett.
119
,
012405
(
2021
).

Supplementary Material

You do not currently have access to this content.