Biopsy is an important means to obtain pathological tissue samples. The traditional imaging technologies have played a great role in clinical biopsy, but they still face some insurmountable problems. Microwave-induced thermoacoustic imaging has been demonstrated to be a powerful technique for visualizing biological tissue structures and functions due to its high resolution, deep imaging depth, and minimal biohazard, which shows great potential for biomarker biopsy navigation. Here, we reported a real-time microwave-pumped thermoacoustic imaging technique for breast tumor intervention biopsy guidance by a fast scanning semi-ring ultrasonic transducer with 128 elements. The system can achieve an imaging speed of about 25 frames per second, and spatial resolution was about 870 μm. The proposed system possesses obvious advantages, such as fast imaging and high resolution, that make it a promising option for breast tumor biomarker biopsy navigation.

1.
A. L.
Tam
,
H. J.
Lim
,
I. I.
Wistuba
et al, “
Image-guided biopsy in the era of personalized cancer care: Proceedings from the society of interventional radiology research consensus panel
,”
J. Vasc. Interventional Radiol.
27
(
1
),
8
(
2016
).
2.
H.
Wang
,
S.
Liu
,
T.
Wang
et al, “
Three-dimensional interventional photoacoustic imaging for biopsy needle guidance with a linear array transducer
,”
J. Biophotonics
12
(
12
),
e201900212
(
2019
).
3.
E.
Ziv
,
J. C.
Durack
, and
S. B.
Solomon
, “
The importance of biopsy in the era of molecular medicine
,”
Cancer J.
22
(
6
),
418
(
2016
).
4.
M.
Ignatiadis
,
G. W.
Sledge
, and
S. S.
Jeffrey
, “
Liquid biopsy enters the clinic-implementation issues and future challenges
,”
Nat. Rev. Clin. Oncol.
18
(
5
),
297
312
(
2021
).
5.
A.
Raman
,
M.
Uprety
,
M. J.
Calero
et al, “
A systematic review comparing digital subtraction angiogram with magnetic resonance angiogram studies in demonstrating the angioarchitecture of cerebral arteriovenous malformations
,”
Cureus
14
(
6
),
e25803
(
2022
).
6.
S.
Lei
,
T.
Ma
,
Z.
Gao
et al, “
Endoscopic ultrasound localization microscopy for the evaluation of the microvasculature of gastrointestinal tract tumors in rabbits
,”
IEEE Trans. Biomed. Eng.
69
(
11
),
3438
3448
(
2022
).
7.
S.
Krishnamurthy
,
N.
Sneige
,
D. G.
Bedi
et al, “
Role of ultrasound‐guided fine‐needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma
,”
Cancer
95
(
5
),
982
988
(
2002
).
8.
H.
Qin
,
Y.
Cui
,
Z.
Wu
et al, “
Real-time thermoacoustic imaging-guidance for breast tumor resection
,”
IEEE Photonics J.
12
(
3
),
3700207
(
2020
).
9.
F.
Porpiglia
,
E.
Checcucci
,
D.
Amparore
et al, “
Percutaneous kidney puncture with three-dimensional mixed-reality hologram guidance: From preoperative planning to intraoperative navigation
,”
Eur. Urol.
81
(
6
),
588
597
(
2022
).
10.
D. A.
Bluemke
,
C. A.
Gatsonis
,
M. H.
Chen
et al, “
Magnetic resonance imaging of the breast prior to biopsy
,”
J. Am. Med. Assoc.
292
(
22
),
2735
2742
(
2004
).
11.
E.
Carmi
,
S.
Liu
,
N.
Alon
et al, “
Resolution enhancement in MRI
,”
Magn. Reson. Imaging
24
(
2
),
133
154
(
2006
).
12.
G.
Huang
,
J.
Lv
,
Y.
He
et al, “
In vivo quantitative photoacoustic evaluation of the liver and kidney pathology in tyrosinemia
,”
Photoacoustics
28
,
100410
(
2022
).
13.
B.
Gong
,
J.
Tang
,
X.
Jiang
et al, “
In situ fluorescence-photoacoustic measurement of the changes of brown adipose tissue in mice under hindlimb unloading
,”
J. Appl. Physiol.
135
,
251
259
(
2023
).
14.
M. A.
Lediju Bell
and
J.
Shubert
, “
Photoacoustic-based visual servoing of a needle tip
,”
Sci. Rep.
8
(
1
),
15519
(
2018
).
15.
J.
Kang
,
J. H.
Chang
,
S. M.
Kim
et al, “
Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: In vivo proof-of-principle and validation with nodal obstruction
,”
Sci. Rep.
7
(
1
),
45008
(
2017
).
16.
L.
Ni
,
W.
Lin
,
A.
Kasputis
et al, “
Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates ex-vivo
,”
Photoacoustics
28
,
100418
(
2022
).
17.
M. S.
Karthikesh
and
X.
Yang
, “
Photoacoustic image-guided interventions
,”
Exp. Biol. Med.
245
(
4
),
330
341
(
2020
).
18.
Y.
Wang
,
L.
Zhang
,
B.
Wang
et al, “
Microwave-induced thermoacoustic imaging with a multi-cell AlScN piezoelectric micromachined ultrasonic transducer
,”
Appl. Phys. Lett.
122
(
13
),
133702
(
2023
).
19.
H.
Zhang
,
M.
Ren
,
Y.
Wang
et al, “
A high‐efficient excitation‐detection thermoacoustic imaging probe for breast tumor detection
,”
Med. Phys.
50
(
3
),
1670
1679
(
2023
).
20.
Q.
Liu
,
X.
Liang
,
W.
Qi
et al, “
Biomedical microwave-induced thermoacoustic imaging
,”
J. Innovative Opt. Health Sci.
15
(
4
),
2230007
(
2022
).
21.
M.
Soltani
,
R.
Rahpeima
, and
F. M.
Kashkooli
, “
Breast cancer diagnosis with a microwave thermoacoustic imaging technique—A numerical approach
,”
Med. Biol. Eng. Comput.
57
,
1497
1513
(
2019
).
22.
M.
Alzuhiri
,
J.
Song
,
B.
Li
et al, “
Enhanced pulsed thermoacoustic imaging by noncoherent pulse compression
,”
J. Appl. Phys.
130
(
17
),
174902
(
2021
).
23.
G.
Ku
and
L. V.
Wang
, “
Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast
,”
Med. Phys.
28
(
1
),
4
10
(
2001
).
24.
C.
Karunakaran
,
H.
Zhao
,
H.
Xin
et al, “
Real-time volumetric thermoacoustic imaging and thermometry using a 1.5-D ultrasound array
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
68
(
4
),
1234
1244
(
2021
).
25.
Z.
Zheng
,
L.
Huang
, and
H.
Jiang
, “
Label-free thermoacoustic imaging of human blood vessels in vivo
,”
Appl. Phys. Lett.
113
(
25
),
253702
(
2018
).
26.
R. S.
Witte
and
E. A.
Tamimi
, “
Emerging photoacoustic and thermoacoustic imaging technologies for detecting primary and metastatic cancer and guiding therapy
,”
Clin. Exp. Metastasis
39
(
1
),
213
217
(
2022
).
27.
R. A.
Kruger
,
K. D.
Miller
,
H. E.
Reynolds
et al, “
Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz—Feasibility study
,”
Radiology
216
(
1
),
279
283
(
2000
).
28.
R. S.
Witte
,
C.
Karunakaran
,
A. N.
Zuniga
et al, “
Frontiers of cancer imaging and guided therapy using ultrasound, light, and microwaves
,”
Clin. Exp. Metastasis
35
,
413
418
(
2018
).
29.
H.
Zhang
,
M.
Ren
,
S.
Zhang
et al, “
Microwave-induced thermoacoustic imaging for biomedical applications
,”
Phys. Scr.
98
,
032001
(
2023
).
30.
S. K.
Patch
,
D.
Santiago‐Gonzalez
, and
B.
Mustapha
, “
Thermoacoustic range verification in the presence of acoustic heterogeneity and soundspeed errors–Robustness relative to ultrasound image of underlying anatomy
,”
Med. Phys.
46
(
1
),
318
327
(
2019
).
31.
Z.
Chi
,
L.
Huang
,
S.
Ge
et al, “
Anti‐phase microwave illumination‐based thermoacoustic tomography of in vivo human finger joints
,”
Med. Phys.
46
(
5
),
2363
2369
(
2019
).
32.
Y.
Zhao
,
T.
Shan
,
Z.
Chi
et al, “
Thermoacoustic tomography of germinal matrix hemorrhage in neonatal mouse cerebrum
,”
J. X-ray Sci. Technol.
28
(
1
),
83
93
(
2020
).
33.
L.
Huang
,
Z.
Zheng
,
Z.
Chi
et al, “
Compact thermoacoustic imaging system based on a low‐cost and miniaturized microwave generator for in vivo biomedical imaging
,”
Med. Phys.
48
(
8
),
4242
4248
(
2021
).
34.
W. H.
Bailey
,
R.
Bodemann
,
J.
Bushberg
et al, “
Synopsis of IEEE Std C95. 1™-2019 ‘IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz
’,”
IEEE Access
7
,
171346
171356
(
2019
).

Supplementary Material

You do not currently have access to this content.