In this study, we investigated various approaches to manipulate the flake density, size, and thickness of two-dimensional transition metal dichalcogenides by independently tuning the precursors and process conditions of the metal–organic chemical vapor deposition system. Normally off device characteristics were realized for both the as-grown and transferred cases. Furthermore, we demonstrated the versatility of our growth method by applying it to several commonly used gate dielectric materials, such as SiO2, SiNx, and AlOx.

1.
Y.
Cui
,
R.
Xin
,
Z.
Yu
,
Y.
Pan
,
Z. Y.
Ong
,
X.
Wei
,
J.
Wang
,
H.
Nan
,
Z.
Ni
et al, “
High-performance monolayer WS2 field-effect transistors on high-κ dielectrics
,”
Adv. Mater.
27
,
5230
5234
(
2015
).).
2.
A.
Sebastian
,
R.
Pendurthi
,
T. H.
Choudhury
,
J. M.
Redweing
, and
S.
Das
, “
Benchmarking monolayer MoS2 and WS2 field-effect transistors
,”
Nat. Commun.
12
,
693
(
2021
).
3.
M. W.
Iqbal
,
M. Z.
Iqbal
,
M. F.
Khan
,
M. A.
Shehzad
,
Y.
Seo
,
J. H.
Park
,
C.
Hwang
, and
J.
Eom
, “
High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films
,”
Sci. Rep.
5
,
10699
(
2015
).
4.
Z.
Xu
,
Y.
Lv
,
J.
Li
,
F.
Huang
,
P.
Nie
,
S.
Zhang
,
S.
Zhao
,
S.
Zhao
, and
G.
Wei
, “
CVD controlled growth of large-scale WS2 monolayers
,”
RSC Adv.
9
,
29628
29635
(
2019
).
5.
X.
Li
,
J.
Zhang
,
N.
Zhou
,
H.
Xu
, and
R.
Yang
, “
Insight into the role of H2 in WS2 growth by chemical vapor deposition
,”
ACS Appl. Electron. Mater.
3
(
11
),
5138
5146
(
2021
).
6.
K.
Kang
,
S.
Xie
,
L.
Huang
,
Y.
Han
,
P. Y.
Huang
,
K. F.
Mak
,
C. J.
Kim
,
D.
Muller
, and
J.
Park
, “
High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
,”
Nature
520
,
656
660
(
2015
).
7.
M.
Macha
,
H. G.
Ji
,
M.
Tripathi
,
Y.
Zhao
,
M.
Thakur
,
J.
Zhang
,
A.
Kis
, and
A.
Radenovic
, “
Wafer-scale MoS2 with water-vapor assisted showerhead MOCVD
,”
Nanoscale Adv.
4
,
4391
4401
(
2022
).
8.
W.
Hong
,
C.
Park
,
G. W.
Shim
,
S. Y.
Yang
, and
S. Y.
Choi
, “
Wafer-scale uniform growth of an atomically thin MoS2 film with controlled layer numbers by metal–organic chemical vapor deposition
,”
ACS Appl. Mater. Interfaces
13
(
42
),
50497
50504
(
2021
).
9.
L. K.
Tan
,
B.
Liu
,
J. H.
Teng
,
S.
Guo
,
H. Y.
Low
, and
K. P.
Loh
, “
Atomic layer deposition of a MoS2 film
,”
Nanoscale
6
,
10584
10588
(
2014
).
10.
R.
Browning
,
P.
Padigi
,
R.
Solanki
,
D. J.
Tweet
,
P.
Schuele
, and
D.
Evans
, “
Atomic layer deposition of MoS2 thin films
,”
Mater. Res. Express
2
,
035006
(
2015
).
11.
J. Y.
Jang
,
S.
Yeo
,
H.
Lee
,
H.
Kim
, and
S. H.
Kim
, “
Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition
,”
Appl. Surf. Sci.
365
,
160
165
(
2016
).
12.
M. I.
Serna
,
S. H.
Yoo
,
S.
Moreno
,
Y.
Xi
,
J. P.
Oviedo
,
H.
Choi
,
H. A.
Alshareef
,
M. J.
Kim
,
M. M.
Jolandan
, and
M. A. Q.
Lopez
, “
Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control
,”
ACS Nano
10
(
6
),
6054
6061
(
2016
).
13.
M. I.
Serna
,
S.
Moreno
,
M.
Higgins
,
H.
Choi
,
M. M.
Jolandan
, and
M. A. Q.
Lopez
, “
Growth parameter enhancement for MoS2 thin films synthesized by pulsed laser deposition
,”
Phys. Status Solidi C
13
,
848
854
(
2016
).
14.
K. N.
Kang
,
K.
Godin
, and
E. H.
Yang
, “
The growth scale and kinetics of WS2 monolayers under varying H2 concentration
,”
Sci. Rep.
5
,
13205
(
2015
).
15.
C.
Lan
,
Z.
Zhou
,
Z.
Zhou
,
L. G.
Li
,
L.
Shu
,
L.
Shen
,
D.
Li
,
R.
Dong
,
S. P.
Yip
, and
J. C.
Ho
, “
Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetector by enhanced chemical vapor deposition
,”
Nano Res.
11
(
6
),
3371
3384
(
2018
).
16.
D. R.
Stull
, “
Vapor pressure of pure substances. Organic and inorganic compounds
,”
Ind. Eng. Chem.
39
(
4
),
517
540
(
1947
).
17.
M.
Chubarov
,
T. H.
Choudhury
,
D. R.
Hicky
,
S.
Bachu
,
T.
Zhang
,
A.
Sebastian
,
A.
Bansal
,
H.
Zhu
,
N.
Trainor
,
S.
Das
et al, “
Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire
,”
ACS Nano
15
(
2
),
2532
2541
(
2021
).
18.
D.
Dumcenco
,
D.
Ovchinnikov
,
K.
Marinov
,
P.
Lazic
,
M.
Gibertini
,
N.
Marazari
,
O. L.
Sanchez
,
Y. C.
Kung
,
D.
Krasnozhon
et al, “
Large-area epitaxial monolayer MoS2
,”
ACS Nano
9
(
4
),
4611
4620
(
2015
).
19.
A.
Cohen
,
A.
Patsha
,
P. K.
Mohapatra
,
M.
Kazes
,
K.
Rangnathan
,
L.
Houben
,
D.
Oron
, and
A.
Ismach
, “
Growth-etch metal–organic chemical vapor deposition approach of WS2 atomic layers
,”
ACS Nano
15
(
1
),
526
538
(
2021
).
20.
M.
Okada
,
N.
Chang
,
W. H.
Chang
,
T.
Endo
,
A.
Ando
,
T.
Shimizu
,
T.
Kubo
,
Y.
Miyata
, and
T.
Irisawa
, “
Gas-source CVD growth of atomic layered WS2 from WF6 and H2S precursors with high grain size uniformity
,”
Sci. Rep.
9
,
17678
(
2019
).
21.
A.
Cohen
,
P. K.
Mohapatra
,
S.
Hettler
,
A.
Patsha
,
K. V. L. V.
Narayanachari
,
P.
Shekhter
,
J.
Cavin
,
J. M.
Rondinelli
,
M.
Bedzyk
,
O.
Dieguez
,
R.
Arenal
, and
A.
Ismach
, “
Tungsten oxide mediated quasi-van der Waals epitaxy of WS2 on sapphire
,”
ACS Nano
17
(
6
),
5399
5411
(
2023
).
22.
B.
Groven
,
A. N.
Mehta
,
H.
Bender
,
Q.
Smets
,
J.
Meersschaut
,
A.
Franquet
,
T.
Conard
,
T.
Nuytten
,
P.
Verdonck
et al, “
Nucleation mechanism during WS2 plasma enhanced atomic layer deposition on amorphous Al2O3 and sapphire substrates
,”
J. Vac. Sci. Technol. A
36
,
01A105
(
2018
).
23.
Y.
Wang
,
V.
Pelgrin
,
S.
Gyger
,
G. M.
Uddin
,
X.
Bai
,
C.
Lafforgue
,
L.
Vivien
,
K. D.
Jons
,
E.
Cassan
, and
Z.
Sun
, “
Enhancing Si3N4 waveguide nonlinearity with heterogeneous integration of few-layer WS2
,”
ACS Photonics
8
,
2713
2721
(
2021
).
You do not currently have access to this content.