N-polar AlGaN is an emerging wide-bandgap semiconductor for next-generation high electron mobility transistors and ultraviolet light emitting diodes and lasers. Here, we demonstrate the growth and characterization of high-quality N-polar AlGaN films on C-face 4H-silicon carbide (SiC) substrates by molecular beam epitaxy. On optimization of the growth conditions, N-polar AlGaN films exhibit a crack free, atomically smooth surface (rms roughness ∼ 0.9 nm), and high crystal quality with low density of defects and dislocations. The N-polar crystallographic orientation of the epitaxially grown AlGaN film is unambiguously confirmed by wet chemical etching. We demonstrate precise compositional tunability of the N-polar AlGaN films over a wide range of Al content and a high internal quantum efficiency ∼74% for the 65% Al content AlGaN film at room temperature. Furthermore, controllable silicon (Si) doping in high Al content (65%) N-polar AlGaN films has been demonstrated with the highest mobility value ∼65 cm2/V-s observed corresponding to an electron concentration of 1.1 × 1017 cm−3, whereas a relatively high mobility value of 18 cm2/V-s is sustained for an electron concentration of 3.2 × 1019 cm−3, with an exceptionally low resistivity value of 0.009 Ω·cm. The polarity-controlled epitaxy of AlGaN on SiC presents a viable approach for achieving high-quality N-polar III-nitride semiconductors that can be harnessed for a wide range of emerging electronic and optoelectronic device applications.

1.
Y.
Wu
,
X.
Liu
,
A.
Pandey
,
P.
Zhou
,
W. J.
Dong
,
P.
Wang
,
J.
Min
,
P.
Deotare
,
M.
Kira
,
E.
Kioupakis
, and
Z.
Mi
,
Prog. Quantum Electron.
85
,
100401
(
2022
).
2.
T.
Palacios
,
C.-S.
Suh
,
A.
Chakraborty
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
27
(
6
),
428
(
2006
).
3.
S.
Vanka
,
E.
Arca
,
S.
Cheng
,
K.
Sun
,
G. A.
Botton
,
G.
Teeter
, and
Z.
Mi
,
Nano Lett.
18
(
10
),
6530
(
2018
).
4.
O.
Ambacher
,
J. Phys. D: Appl. Phys.
31
(
20
),
2653
(
1998
).
5.
T.
Palacios
,
F.
Calle
,
J.
Grajal
,
E.
Monroy
,
M.
Eickhoff
,
O.
Ambacher
, and
F.
Omnes
,
Presented at the 2002 IEEE Ultrasonics Symposium, 2002. Proceedings
,
2002
.
6.
A.
Pandey
,
J.
Gim
,
R.
Hovden
, and
Z.
Mi
,
Appl. Phys. Lett.
117
(
24
),
241101
(
2020
).
7.
H.
Hirayama
,
S.
Fujikawa
, and
N.
Kamata
,
Electron. Commun. Jpn.
98
(
5
),
1
(
2015
).
8.
D.
Li
,
S.
Liu
,
Z.
Qian
,
Q.
Liu
,
K.
Zhou
,
D.
Liu
,
S.
Sheng
,
B.
Sheng
,
F.
Liu
, and
Z.
Chen
,
Adv. Mater.
34
(
19
),
2109765
(
2022
).
9.
J.-G.
Kim
,
C.
Cho
,
E.
Kim
,
J. S.
Hwang
,
K.-H.
Park
, and
J.-H.
Lee
,
IEEE Trans. Electron Devices
68
(
4
),
1513
(
2021
).
10.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
,
Proc. IEEE
90
(
6
),
1022
(
2002
).
11.
T.
Palacios
,
A.
Chakraborty
,
S.
Rajan
,
C.
Poblenz
,
S.
Keller
,
S. P.
DenBaars
,
J. S.
Speck
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
26
(
11
),
781
(
2005
).
12.
A. M.
Armstrong
,
B. A.
Klein
,
A.
Colon
,
A. A.
Allerman
,
E. A.
Douglas
,
A. G.
Baca
,
T. R.
Fortune
,
V. M.
Abate
,
S.
Bajaj
, and
S.
Rajan
,
Jpn. J. Appl. Phys., Part 1
57
(
7
),
074103
(
2018
).
13.
S.
Keller
,
H.
Li
,
M.
Laurent
,
Y.
Hu
,
N.
Pfaff
,
J.
Lu
,
D. F.
Brown
,
N. A.
Fichtenbaum
,
J. S.
Speck
, and
S. P.
DenBaars
,
Semicond. Sci. Technol.
29
(
11
),
113001
(
2014
).
14.
Z.
Zhuang
,
D.
Iida
, and
K.
Ohkawa
,
Opt. Express
28
(21),
30423
(
2020
).
15.
O. S.
Koksaldi
,
J.
Haller
,
H.
Li
,
B.
Romanczyk
,
M.
Guidry
,
S.
Wienecke
,
S.
Keller
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
39
(
7
),
1014
(
2018
).
16.
S.
Dasgupta
,
Nidhi
,
N.
David
,
F.
Brown
,
F.
Wu
,
S.
Keller
,
J. S.
Speck
, and
U. K.
Mishra
,
Appl. Phys. Lett.
96
(
14
),
143504
(
2010
).
17.
A.
Pandey
and
Z.
Mi
,
IEEE J. Quantum Electron.
58
(
4
),
1
(
2022
).
18.
P.
Wang
,
D.
Wang
,
S.
Mondal
,
Y.
Wu
,
T.
Ma
, and
Z.
Mi
,
ACS Appl. Mater. Interfaces
14
(
13
),
15747
(
2022
).
19.
S.
Dasgupta
,
F.
Wu
,
J. S.
Speck
, and
U. K.
Mishra
,
Appl. Phys. Lett.
94
(
15
),
151906
(
2009
).
20.
S.
Xu
,
X.
Zhang
,
X.
Luo
,
R.
Fang
,
J.
Lyu
,
M.-J.
Lai
, and
G.
Hu
,
Mater. Sci. Semicon. Process.
160
,
107447
(
2023
).
21.
O.
Ledyaev
,
M.
Pandikunta
, and
S.
Nikishin
,
Jpn. J. Appl. Phys., Part 1
53
(
5
),
050306
(
2014
).
22.
J.
Singhal
,
J.
Encomendero
,
Y.
Cho
,
L.
van Deurzen
,
Z.
Zhang
,
K.
Nomoto
,
M.
Toita
,
H. G.
Xing
, and
D.
Jena
,
AIP Adv.
12
(
9
),
095314
(
2022
).
23.
Z.
Zhang
,
Y.
Hayashi
,
T.
Tohei
,
A.
Sakai
,
V.
Protasenko
,
J.
Singhal
,
H.
Miyake
,
H. G.
Xing
,
D.
Jena
, and
Y.
Cho
,
Sci. Adv.
8
(
36
),
eabo6408
(
2022
).
24.
L.
Jori
,
H.
Okumura
,
I.
Kim
,
C.
Kauppinen
,
T.
Palacios
, and
S.
Suihkonen
,
J. Cryst. Growth
487
,
12
(
2018
).
25.
L.
Jori
,
H.
Okumura
,
I.
Kim
,
M.
Rudzinski
,
J.
Grzonka
,
T.
Palacios
, and
S.
Suihkonen
,
J. Cryst. Growth
487
,
50
(
2018
).
26.
D.
Won
and
J. M.
Redwing
,
J. Cryst. Growth
377
,
51
(
2013
).
27.
J.
Choi
,
R.
Puthenkovilakam
, and
J. P.
Chang
,
Appl. Phys. Lett.
86
(
19
),
192101
(
2005
).
28.
J.
Lu
,
J.-T.
Chen
,
M.
Dahlqvist
,
R.
Kabouche
,
F.
Medjdoub
,
J.
Rosen
,
O.
Kordina
, and
L.
Hultman
,
Appl. Phys. Lett.
115
(
22
),
221601
(
2019
).
29.
A.
Yoshikawa
and
K.
Xu
,
Opt. Mater.
23
(
1-2
),
7
(
2003
).
30.
31.
X. W.
Chen
,
C. H.
Jia
,
Y. H.
Chen
,
H. T.
Wang
, and
W. F.
Zhang
,
J. Phys. D: Appl. Phys.
47
(
12
),
125303
(
2014
).
32.
Q.
Sun
,
Y. S.
Cho
,
I.-H.
Lee
,
J.
Han
,
B. H.
Kong
, and
H. K.
Cho
,
Appl. Phys. Lett.
93
(
13
),
131912
(
2008
).
33.
M.
Adachi
,
M.
Takasugi
,
M.
Sugiyama
,
J.
Iida
,
A.
Tanaka
, and
H.
Fukuyama
,
Phys. Status Solidi B
252
(
4
),
743
(
2015
).
34.
Y.
Nagasawa
and
A.
Hirano
,
Appl. Sci.
8
(
8
),
1264
(
2018
).
35.
S. F.
Chichibu
,
A.
Uedono
,
K.
Kojima
,
H.
Ikeda
,
K.
Fujito
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
, and
S.
Ishibashi
,
J. Appl. Phys.
123
(
16
),
161413
(
2018
).
36.
A.
Getty
,
E.
Matioli
,
M.
Iza
,
C.
Weisbuch
, and
J. S.
Speck
,
Appl. Phys. Lett.
94
,
181102
(
2009
).
37.
S.
Zhao
,
S.
Woo
,
M.
Bugnet
,
X.
Liu
,
J.
Kang
,
G.
Botton
, and
Z.
Mi
,
Nano Lett.
15
(
12
),
7801
7807
(
2015
).
38.
H.
Sun
,
S.
Mitra
,
R. C.
Subedi
,
Y.
Zhang
,
W.
Guo
,
J.
Ye
,
M. K.
Shakfa
,
T. K.
Ng
,
B. S.
Ooi
, and
I. S.
Roqan
,
Adv. Func. Mater.
29
(
48
),
1905445
(
2019
).
39.
R.
Collazo
,
S.
Mita
,
J.
Xie
,
A.
Rice
,
J.
Tweedie
,
R.
Dalmau
, and
Z.
Sitar
,
Phys. Status Solidi C
8
(
7‐8
),
2031
(
2011
).
40.
A.
Kakanakova-Georgieva
,
D.
Nilsson
,
X. T.
Trinh
,
U.
Forsberg
,
N. T
Son
, and
E.
Janzén
,
Appl. Phys. Lett.
102
(
13
),
132113
(
2013
).
41.
K. B.
Nam
,
J.
Li
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
81
(
6
),
1038
(
2002
).
42.
J. Y.
Lin
and
H. X.
Jiang
,
J. Appl. Phys.
113
(
12
),
123501
(
2013
).
43.
K.
Nagata
,
H.
Makino
,
T.
Yamamoto
,
K.
Kataoka
,
T.
Narita
, and
Y.
Saito
,
Appl. Phys. Express
13
(
2
),
025504
(
2020
).
44.
P.
Pampili
,
D. V.
Dinh
,
V. Z.
Zubialevich
, and
P. J.
Parbrook
,
J. Phys. D: Appl. Phys.
51
(
6
),
06LT01
(
2018
).
45.
M.
Pophristic
,
S. P.
Guo
, and
B.
Peres
,
Appl. Phys. Lett.
82
(
24
),
4289
(
2003
).
46.
S.
Bharadwaj
,
S. M.
Islam
,
K.
Nomoto
,
V.
Protasenko
,
A.
Chaney
,
H. G.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
114
(
11
),
113501
(
2019
).
You do not currently have access to this content.