Nanodiamonds with group-IV color centers, such as silicon-vacancy centers and germanium-vacancy (GeV) centers, exhibit excellent properties, including a sharp and stable zero-phonon line, surface functionalization, and low cytotoxicity. Because the line peak wavelength shifts linearly with the temperature under ambient conditions, the nanodiamonds are promising candidates for all-optical nanoscale thermometry inside a living cell. However, the particles used for temperature measurements have been reported to be larger than a few hundred nanometers. Here, we report temperature sensing using GeV detonation nanodiamonds. The GeV nanodiamonds have a mean particle size of 20 nm. These are the smallest particles among GeV-based particles used in thermometry. The sensitivity of the single GeV centers in the detonation nanodiamond is estimated to be almost consistent with the reported ones of the single GeV centers in bulk diamonds, which can potentially reach sub-kelvin temperature accuracy. The GeV detonation nanodiamonds should function as good photoluminescence probes and intracellular temperature sensors.

1.
T.
Bai
and
N.
Gu
, “
Micro/nanoscale thermometry for cellular thermal sensing
,”
Small
12
,
4590
4610
(
2016
).
2.
B. D.
Knapp
and
K. C.
Huang
, “
The effects of temperature on cellular physiology
,”
Annu. Rev. Biophys.
51
,
499
526
(
2022
).
3.
C.
Bradac
,
S. F.
Lim
,
H. C.
Chang
, and
I.
Aharonovich
, “
Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications
,”
Adv. Opt. Mater.
8
,
2000183
(
2020
).
4.
J.
Zhou
,
B.
del Rosal
,
D.
Jaque
,
S.
Uchiyama
, and
D.
Jin
, “
Advances and challenges for fluorescence nanothermometry
,”
Nat. Methods
17
,
967
980
(
2020
).
5.
R.
Schirhagl
,
K.
Chang
,
M.
Loretz
, and
C. L.
Degen
, “
Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology
,”
Annu. Rev. Phys. Chem.
65
,
83
105
(
2014
).
6.
D.
Terada
,
S.
Sotoma
,
Y.
Harada
,
R.
Igarashi
, and
M.
Shirakawa
, “
One-pot synthesis of highly dispersible fluorescent nanodiamonds for bioconjugation
,”
Bioconjugate Chem.
29
,
2786
2792
(
2018
).
7.
H. S.
Jung
and
K. C.
Neuman
, “
Surface modification of fluorescent nanodiamonds for biological applications
,”
Nanomaterials
11
,
153
(
2021
).
8.
M.
Fujiwara
and
Y.
Shikano
, “
Diamond quantum thermometry: From foundations to applications
,”
Nanotechnology
32
,
482002
(
2021
).
9.
O. A.
Shenderova
,
A. I.
Shames
,
N. A.
Nunn
,
M. D.
Torelli
,
I.
Vlasov
, and
A.
Zaitsev
, “
Review article: Synthesis, properties, and applications of fluorescent diamond particles
,”
J. Vac. Sci. Technol. B
37
,
030802
(
2019
).
10.
E.
Mayerhoefer
and
A.
Krueger
, “
Surface control of nanodiamond: From homogeneous termination to complex functional architectures for biomedical applications
,”
Acc. Chem. Res.
55
,
3594
3604
(
2022
).
11.
T. F.
Segawa
and
R.
Igarashi
, “
Nanoscale quantum sensing with nitrogen-vacancy centers in nanodiamonds—A magnetic resonance perspective
,”
Prog. Nucl. Magn. Reson. Spectrosc.
134–135
,
20
38
(
2023
).
12.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C. L.
Hollenberg
, “
The nitrogen-vacancy colour centre in diamond
,”
Phys. Rep.
528
,
1
45
(
2013
).
13.
K.
Hayashi
,
Y.
Matsuzaki
,
T.
Taniguchi
,
T.
Shimo-Oka
,
I.
Nakamura
,
S.
Onoda
,
T.
Ohshima
,
H.
Morishita
,
M.
Fujiwara
,
S.
Saito
, and
N.
Mizuochi
, “
Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble
,”
Phys. Rev. Appl.
10
,
034009
(
2018
).
14.
G.
Kucsko
,
P. C.
Maurer
,
N. Y.
Yao
,
M.
Kubo
,
H. J.
Noh
,
P. K.
Lo
,
H.
Park
, and
M. D.
Lukin
, “
Nanometre-scale thermometry in a living cell
,”
Nature
500
,
54
58
(
2013
).
15.
C.
Bradac
,
W.
Gao
,
J.
Forneris
,
M. E.
Trusheim
, and
I.
Aharonovich
, “
Quantum nanophotonics with group IV defects in diamond
,”
Nat. Commun.
10
,
5625
(
2019
).
16.
M.
Alkahtani
,
I.
Cojocaru
,
X.
Liu
,
T.
Herzig
,
J.
Meijer
,
J.
Küpper
,
T.
Lühmann
,
A. V.
Akimov
, and
P. R.
Hemmer
, “
Tin-vacancy in diamonds for luminescent thermometry
,”
Appl. Phys. Lett.
112
,
241902
(
2018
).
17.
C. T.
Nguyen
,
R. E.
Evans
,
A.
Sipahigil
,
M. K.
Bhaskar
,
D. D.
Sukachev
,
V. N.
Agafonov
,
V. A.
Davydov
,
L. F.
Kulikova
,
F.
Jelezko
, and
M. D.
Lukin
, “
All-optical nanoscale thermometry with silicon-vacancy centers in diamond
,”
Appl. Phys. Lett.
112
,
203102
(
2018
).
18.
W.
Liu
,
M. N. A.
Alam
,
Y.
Liu
,
V. N.
Agafonov
,
H.
Qi
,
K.
Koynov
,
V. A.
Davydov
,
R.
Uzbekov
,
U.
Kaiser
,
T.
Lasser
,
F.
Jelezko
,
A.
Ermakova
, and
T.
Weil
, “
Silicon-vacancy nanodiamonds as high performance near-infrared emitters for live-cell dual-color imaging and thermometry
,”
Nano Lett.
22
,
2881
2888
(
2022
).
19.
D. H.
Lin
and
A.
Hoelz
, “
The structure of the nuclear pore complex (an update)
,”
Annu. Rev. Biochem.
88
,
725
783
(
2019
).
20.
T. T.
Tran
,
B.
Regan
,
E. A.
Ekimov
,
Z.
Mu
,
Y.
Zhou
,
W. B.
Gao
,
P.
Narang
,
A. S.
Solntsev
,
M.
Toth
,
I.
Aharonovich
, and
C.
Bradac
, “
Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry
,”
Sci. Adv.
5
,
eaav9180
(
2019
).
21.
J. C.
Arnault
,
Advanced Material Analysis Properties and Applications
, 1st ed. (
Elsevier
,
Amsterdam
,
2017
), pp.
25
56
.
22.
V. N.
Mochalin
,
O.
Shenderova
,
D.
Ho
, and
Y.
Gogotsi
, “
The properties and applications of nanodiamond
,”
Nat. Nanotechnol.
7
,
11
23
(
2012
).
23.
S.
Sotoma
,
D.
Terada
,
T. F.
Segawa
,
R.
Igarashi
,
Y.
Harada
, and
M.
Shirakawa
, “
Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position
,”
Sci. Rep.
8
,
5463
(
2018
).
24.
D.
Terada
,
T. F.
Segawa
,
A. I.
Shames
,
S.
Onoda
,
T.
Ohshima
,
E.
Osawa
,
R.
Igarashi
, and
M.
Shirakawa
, “
Monodisperse five-nanometer-sized detonation nanodiamonds enriched in nitrogen-vacancy centers
,”
ACS Nano
13
,
6461
6468
(
2019
).
25.
Y.
Makino
,
T.
Mahiko
,
M.
Liu
,
A.
Tsurui
,
T.
Yoshikawa
,
S.
Nagamachi
,
S.
Tanaka
,
K.
Hokamoto
,
M.
Ashida
,
M.
Fujiwara
,
N.
Mizuochi
, and
M.
Nishikawa
, “
Straightforward synthesis of silicon vacancy (SiV) center-containing single-digit nanometer nanodiamonds via detonation process
,”
Diamond Relat. Mater.
112
,
108248
(
2021
).
26.
Y.
Makino
,
T.
Yoshikawa
,
A.
Tsurui
,
M.
Liu
,
G.
Yamagishi
,
M.
Nishikawa
,
T.
Mahiko
,
M.
Ohno
,
M.
Ashida
, and
N.
Okuyama
, “
Direct synthesis of group IV-vacancy center-containing nanodiamonds via detonation process using aromatic compound as group IV element source
,”
Diamond Relat. Mater.
130
,
109493
(
2022
).
27.
M.
Fujiwara
,
G.
Uchida
,
I.
Ohki
,
M.
Liu
,
A.
Tsurui
,
T.
Yoshikawa
,
M.
Nishikawa
, and
N.
Mizuochi
, “
All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds
,”
Carbon
198
,
57
62
(
2022
).
28.
T.
Iwasaki
,
F.
Ishibashi
,
Y.
Miyamoto
,
Y.
Doi
,
S.
Kobayashi
,
T.
Miyazaki
,
K.
Tahara
,
K. D.
Jahnke
,
L. J.
Rogers
,
B.
Naydenov
,
F.
Jelezko
,
S.
Yamasaki
,
S.
Nagamachi
,
T.
Inubushi
,
N.
Mizuochi
, and
M.
Hatano
, “
Germanium-vacancy single color centers in diamond
,”
Sci. Rep.
5
,
12882
(
2015
).
29.
J.
Görlitz
,
D.
Herrmann
,
G.
Thiering
,
P.
Fuchs
,
M.
Gandil
,
T.
Iwasaki
,
T.
Taniguchi
,
M.
Kieschnick
,
J.
Meijer
,
M.
Hatano
,
A.
Gali
, and
C.
Becher
, “
Spectroscopic investigations of negatively charged tin-vacancy centres in diamond
,”
New J. Phys.
22
,
013048
(
2020
).
30.
P.
Wang
,
T.
Taniguchi
,
Y.
Miyamoto
,
M.
Hatano
, and
T.
Iwasaki
, “
Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment
,”
ACS Photonics
8
,
2947
2954
(
2021
).
31.
K.
Shimazaki
,
H.
Kawaguchi
,
H.
Takashima
,
T. F.
Segawa
,
F. T. K.
So
,
D.
Terada
,
S.
Onoda
,
T.
Ohshima
,
M.
Shirakawa
, and
S.
Takeuchi
, “
Fabrication of detonation nanodiamonds containing silicon-vacancy color centers by high temperature annealing
,”
Phys. Status Solidi A
218
,
2100144
(
2021
).
32.
M.
Zaghrioui
,
V. N.
Agafonov
, and
V. A.
Davydov
, “
Nitrogen and group-IV (Si, Ge) vacancy color centres in nano-diamonds: Photoluminescence study at high temperature (25 °C-600 °C)
,”
Mater. Res. Express
7
,
015043
(
2020
).
33.
J. W.
Fan
,
I.
Cojocaru
,
J.
Becker
,
I. V.
Fedotov
,
M. H. A.
Alkahtani
,
A.
Alajlan
,
S.
Blakley
,
M.
Rezaee
,
A.
Lyamkina
,
Y. N.
Palyanov
,
Y. M.
Borzdov
,
Y. P.
Yang
,
A.
Zheltikov
,
P.
Hemmer
, and
A. V.
Akimov
, “
Germanium-vacancy color center in diamond as a temperature sensor
,”
ACS Photonics
5
,
765
770
(
2018
).
34.
S.
Blakley
,
X.
Liu
,
I.
Fedotov
,
I.
Cojocaru
,
C.
Vincent
,
M.
Alkahtani
,
J.
Becker
,
M.
Kieschnick
,
T.
Lühman
,
J.
Meijer
,
P.
Hemmer
,
A.
Akimov
,
M.
Scully
, and
A.
Zheltikov
, “
Fiber-optic quantum thermometry with germanium-vacancy centers in diamond
,”
ACS Photonics
6
,
1690
1693
(
2019
).
35.
P.
Neumann
,
I.
Jakobi
,
F.
Dolde
,
C.
Burk
,
R.
Reuter
,
G.
Waldherr
,
J.
Honert
,
T.
Wolf
,
A.
Brunner
,
J. H.
Shim
,
D.
Suter
,
H.
Sumiya
,
J.
Isoya
, and
J.
Wrachtrup
, “
High-precision nanoscale temperature sensing using single defects in diamond
,”
Nano Lett.
13
,
2738
2742
(
2013
).
36.
D. M.
Toyli
,
C. F.
De Las Casas
,
D. J.
Christle
,
V. V.
Dobrovitski
, and
D. D.
Awschalom
, “
Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
8417
8421
(
2013
).
37.
J.
Wang
,
F.
Feng
,
J.
Zhang
,
J.
Chen
,
Z.
Zheng
,
L.
Guo
,
W.
Zhang
,
X.
Song
,
G.
Guo
,
L.
Fan
,
C.
Zou
,
L.
Lou
,
W.
Zhu
, and
G.
Wang
, “
High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond
,”
Phys. Rev. B
91
,
155404
(
2015
).
38.
S.
Choi
,
V. N.
Agafonov
,
V. A.
Davydov
, and
T.
Plakhotnik
, “
Ultrasensitive all-optical thermometry using nanodiamonds with a high concentration of silicon-vacancy centers and multiparametric data analysis
,”
ACS Photonics
6
,
1387
1392
(
2019
).
39.
Y. K.
Tzeng
,
P. C.
Tsai
,
H. Y.
Liu
,
O. Y.
Chen
,
H.
Hsu
,
F. G.
Yee
,
M. S.
Chang
, and
H. C.
Chang
, “
Time-resolved luminescence nanothermometry with nitrogen-vacancy centers in nanodiamonds
,”
Nano Lett.
15
,
3945
3952
(
2015
).
40.
T.
Plakhotnik
,
M. W.
Doherty
,
J. H.
Cole
,
R.
Chapman
, and
N. B.
Manson
, “
All-optical thermometry and thermal properties of the optically detected spin resonances of the NV-center in nanodiamond
,”
Nano Lett.
14
,
4989
4996
(
2014
).
41.
T.
Plakhotnik
,
H.
Aman
, and
H. C.
Chang
, “
All-optical single-nanoparticle ratiometric thermometry with a noise or of 0.3 K Hz−1/2
,”
Nanotechnology
26
,
245501
(
2015
).
42.
P. C.
Tsai
,
C. P.
Epperla
,
J. S.
Huang
,
O. Y.
Chen
,
C. C.
Wu
, and
H. C.
Chang
, “
Measuring nanoscale thermostability of cell membranes with single gold–diamond nanohybrids
,”
Angew. Chem., Int. Ed.
56
,
3025
3030
(
2017
).
43.
Y. Y.
Hui
,
O. Y.
Chen
,
T.
Azuma
,
B. M.
Chang
,
F. J.
Hsieh
, and
H. C.
Chang
, “
All-optical thermometry with nitrogen-vacancy centers in nanodiamond-embedded polymer films
,”
J. Phys. Chem. C
123
,
15366
15374
(
2019
).
44.
Y.
Chen
,
C.
Li
,
T.
Yang
,
E. A.
Ekimov
,
C.
Bradac
,
S. T.
Ha
,
M.
Toth
,
I.
Aharonovich
, and
T. T.
Tran
, “
Real-time ratiometric optical nanoscale thermometry
,”
ACS Nano
17
,
2725
2736
(
2023
).
45.
K.
Okabe
,
N.
Inada
,
C.
Gota
,
Y.
Harada
,
T.
Funatsu
, and
S.
Uchiyama
, “
Intracellular Temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
,”
Nat. Commun.
3
,
705
(
2012
).
46.
D.
Chrétien
,
P.
Bénit
,
H.
Ha
,
S.
Keipert
,
R.
El-Khoury
,
Y.
Chang
,
M.
Jastroch
,
H. T.
Jacobs
,
P.
Rustin
, and
M.
Rak
, “
Mitochondria are physiologically maintained at close to 50 °C
,”
PLoS Biol.
16
,
e2003992
(
2018
).
You do not currently have access to this content.