Doping to induce suitable impurity levels is an effective strategy to achieve highly efficient photocatalytic overall water splitting (POWS). However, to predict the position of impurity levels, it is not enough to only depend on the projected density of states of the substituted atom in the traditional method. Herein, taking in phosphorus-doped g-C3N5 as a sample, we find that the impurity atom can change electrostatic potential gradient and polarity and then significantly affect the spatial electron density around the substituted atom, which further adjusts the impurity level position. Based on the redox potential requirement of POWS, we not only obtain suitable impurity levels but also expand the visible light absorption range. Simultaneously, the strengthened polarity induced by doping further improves the redox ability of photogenerated carriers. Moreover, the enhanced surface dipoles obviously promote the adsorption and subsequent splitting of water molecules. Our study provides a more comprehensive view to realize accurate regulation of impurity levels in doping engineering and gives reasonable strategies for designing an excellent catalyst of POWS.

1.
K.
Takanabe
,
ACS Catal.
7
(
11
),
8006
8022
(
2017
).
2.
X.
Yang
and
D.
Wang
,
ACS Appl. Energy Mater.
1
(
12
),
6657
6693
(
2018
).
3.
Y.
Tachibana
,
L.
Vayssieres
, and
J. R.
Durrant
,
Nat. Photonics
6
(
8
),
511
518
(
2012
).
4.
A.
Kudo
and
Y.
Miseki
,
Chem. Soc. Rev.
38
(
1
),
253
278
(
2009
).
5.
S. Y.
Tee
,
K. Y.
Win
,
W. S.
Teo
,
L. D.
Koh
,
S.
Liu
,
C. P.
Teng
, and
M. Y.
Han
,
Adv. Sci.
4
(
5
),
1600337
(
2017
).
6.
Y. J.
Jang
and
J. S.
Lee
,
ChemSusChem
12
(
9
),
1835
1845
(
2019
).
7.
Y.
Bai
,
Y.
Wu
,
C.
Jia
,
L.
Hou
, and
B.
Wang
,
Appl. Phys. Lett.
123
,
012401
(
2023
).
8.
Y.
Cai
,
J.
Gao
,
S.
Chen
,
Q.
Ke
,
G.
Zhang
, and
Y.-W.
Zhang
,
Chem. Mater.
31
(
21
),
8948
8956
(
2019
).
9.
Y.
Dai
and
Y.
Xiong
,
Nano Res. Energy
1
,
e9120006
(
2022
).
10.
F.
Gao
,
J.
He
,
H.
Wang
,
J.
Lin
,
R.
Chen
,
K.
Yi
,
F.
Huang
,
Z.
Lin
, and
M.
Wang
,
Nano Res. Energy
1
,
e9120029
(
2022
).
11.
F.
Guo
,
M.
Zhang
,
S.
Yi
,
X.
Li
,
R.
Xin
,
M.
Yang
,
B.
Liu
,
H.
Chen
,
H.
Li
, and
Y.
Liu
,
Nano Res. Energy
1
,
e9120027
(
2022
).
12.
Z.
Shu
and
Y.
Cai
,
J. Phys.
35
(
20
),
204001
(
2023
).
13.
Z.
Shu
,
H.
Chen
,
X.
Liu
,
H.
Jia
,
H.
Yan
, and
Y.
Cai
,
Adv. Funct. Mater.
33
(
32
),
2301493
(
2023
).
14.
B.
Wang
,
Y.
Wu
,
Y.
Bai
,
P.
Shi
,
G.
Zhang
,
Y.
Zhang
, and
C.
Liu
,
Nanoscale
15
(
32
),
13402
13410
(
2023
).
15.
L.
Li
,
I. M.
u Hasan
,
N.
Xu
,
Farwa
,
R.
He
,
L.
Peng
,
N. K.
Niazi
,
J.-N.
Zhang
, and
J.
Qiao
,
Nano Res. Enrg.
1
(
2
),
e9120015
(
2022
).
16.
J. M.
Luttinger
and
W.
Kohn
,
Phys. Rev.
97
(
4
),
869
883
(
1955
).
17.
S.
Ullah
,
P. A.
Denis
,
M. G.
Menezes
,
F.
Sato
, and
R. B.
Capaz
,
Phys. Rev. B
102
(
13
),
134112
(
2020
).
18.
S.
Ullah
,
F.
Sato
,
M. G.
Menezes
, and
R. B.
Capaz
,
Phys. Rev. B
100
(
8
),
085427
(
2019
).
19.
J. K.
Gamble
,
N. T.
Jacobson
,
E.
Nielsen
,
A. D.
Baczewski
,
J. E.
Moussa
,
I.
Montaño
, and
R. P.
Muller
,
Phys. Rev. B
91
(
23
),
235318
(
2015
).
20.
J.
Salfi
,
J. A.
Mol
,
R.
Rahman
,
G.
Klimeck
,
M. Y.
Simmons
,
L. C.
Hollenberg
, and
S.
Rogge
,
Nat. Mater.
13
(
6
),
605
610
(
2014
).
21.
X.
Li
,
Z.
Li
, and
J.
Yang
,
Phys. Rev. Lett.
112
(
1
),
018301
(
2014
).
22.
S.
Tang
,
Q.
Dang
,
T.
Liu
,
S.
Zhang
,
Z.
Zhou
,
X.
Li
,
X.
Wang
,
E.
Sharman
,
Y.
Luo
, and
J.
Jiang
,
J. Am. Chem. Soc.
142
(
45
),
19308
19315
(
2020
).
23.
L.
Ju
,
J.
Shang
,
X.
Tang
, and
L.
Kou
,
J. Am. Chem. Soc.
142
(
3
),
1492
1500
(
2020
).
24.
S.
Qi
,
Y.
Fan
,
J.
Wang
,
X.
Song
,
W.
Li
, and
M.
Zhao
,
Nanoscale
12
(
1
),
306
315
(
2020
).
25.
T. L.
Wan
,
L.
Ge
,
Y.
Pan
,
Q.
Yuan
,
L.
Liu
,
S.
Sarina
, and
L.
Kou
,
Nanoscale
13
(
15
),
7096
7107
(
2021
).
26.
Y.
Li
,
J.
Li
,
W.
Yang
, and
X.
Wang
,
Nanoscale Horiz.
5
(
8
),
1174
1187
(
2020
).
27.
J.
Hwang
,
Z.
Feng
,
N.
Charles
,
X. R.
Wang
,
D.
Lee
,
K. A.
Stoerzinger
,
S.
Muy
,
R. R.
Rao
,
D.
Lee
,
R.
Jacobs
,
D.
Morgan
, and
Y.
Shao-Horn
,
Mater. Today
31
,
100
118
(
2019
).
28.
I. Y.
Kim
,
S.
Kim
,
X.
Jin
,
S.
Premkumar
,
G.
Chandra
,
N. S.
Lee
,
G. P.
Mane
,
S. J.
Hwang
,
S.
Umapathy
, and
A.
Vinu
,
Angew. Chem., Int. Ed.
57
(
52
),
17135
17140
(
2018
).
29.
C.
Hu
,
Y. H.
Lin
,
M.
Yoshida
, and
S.
Ashimura
,
ACS Appl. Mater. Interfaces
13
(
21
),
24907
24915
(
2021
).
30.
S.
Koichi
and
N.
Hisashi
,
J. Phys. Soc. Jpn.
40
,
1640
1644
(
1976
).
31.
H.
Fritzsche
,
Phys. Rev.
125
(
5
),
1560
1567
(
1962
).
32.
W.
Kohn
and
J. M.
Luttinger
,
Phys. Rev.
98
(
4
),
915
922
(
1955
).

Supplementary Material

You do not currently have access to this content.