HfO2-based ferroelectrics are one of the most actively developed functional materials for memory devices. However, in HfO2-based ferroelectric devices, dielectric breakdown is a main failure mechanism during repeated polarization switching. Elucidation of the breakdown process may broaden the scope of applications for the ferroelectric HfO2. Here, we report direct observations of a breakdown process in HfO2-based ferroelectric capacitors, by in situ laser-based photoemission electron microscopy. We have not only clearly visualized the hard dielectric breakdown (HDB) spot but also observed the regions responsible for the soft dielectric breakdown (SDB), which is a precursor phenomenon to HDB. It was found that the low-resistance region formed after SDB is wider than the conduction path formed after HDB. Furthermore, our spectromicroscopic analysis revealed that the photoelectron spectrum after SDB shows an enhancement in intensity without spectral-shape modulation, interpreted that the initially existed defects are increased. In the HDB spot, however, an additional shoulder structure was observed. These results provide spectroscopic evidence that the electronic states responsible for the conduction path after SDB are different from those after HDB. Through this work, we propose this microscopic approach as a versatile tool for studying buried materials as they are, accelerating the development of material engineering for advanced electronic devices.

1.
E. I.
Vatajelu
,
H.
Aziza
, and
C.
Zambelli
, in
2014 9th International Design and Test Symposium (IDT)
(
IEEE
,
2014
), p.
61
.
2.
J. M.
Hung
,
C. J.
Jhang
,
P. C.
Wu
,
Y. C.
Chiu
, and
M. F.
Chang
,
IEEE Open J. Solid-State Circuits Soc.
1
,
171
(
2021
).
3.
W.
Banerjee
,
Electronics
9
,
1029
(
2020
).
4.
Y. D.
Lin
,
P. C.
Yeh
,
P. J.
Tzeng
,
T. H.
Hou
,
C. I.
Wu
,
Y. C.
King
, and
C. J.
Lin
,
IEEE Trans. Electron Devices
67
,
5479
(
2020
).
5.
S.
Mueller
, in
2018 IEEE International Memory Workshop (IMW)
(
IEEE
,
2018
), p.
1
.
6.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
MRS Commun.
8
,
795
(
2018
).
7.
S. S.
Cheema
,
D.
Kwon
,
N.
Shanker
,
R.
dos Reis
,
S. L.
Hsu
,
J.
Xiao
,
H.
Zhang
,
R.
Wagner
,
A.
Datar
,
M. R.
McCarter
,
C. R.
Serrao
,
A. K.
Yadav
,
G.
Karbasian
,
C. H.
Hsu
,
A. J.
Tan
,
L. C.
Wang
,
V.
Thakare
,
X.
Zhang
,
A.
Mehta
,
E.
Karapetrova
,
R. V.
Chopdekar
,
P.
Shafer
,
E.
Arenholz
,
C.
Hu
,
R.
Proksch
,
R.
Ramesh
,
J.
Ciston
, and
S.
Salahuddin
,
Nature
580
,
478
(
2020
).
8.
S. S.
Cheema
,
N.
Shanker
,
L. C.
Wang
,
C. H.
Hsu
,
S. L.
Hsu
,
Y. H.
Liao
,
M. S.
Jose
,
J.
Gomez
,
W.
Chakraborty
,
W.
Li
,
J. H.
Bae
,
S. K.
Volkman
,
D.
Kwon
,
Y.
Rho
,
G.
Pinelli
,
R.
Rastogi
,
D.
Pipitone
,
C.
Stull
,
M.
Cook
,
B.
Tyrrell
,
V. A.
Stoica
,
Z.
Zhang
,
J. W.
Freeland
,
C. J.
Tassone
,
A.
Mehta
,
G.
Saheli
,
D.
Thompson
,
D. I.
Suh
,
W. T.
Koo
,
K. J.
Nam
,
D. J.
Jung
,
W. B.
Song
,
C. H.
Lin
,
S.
Nam
,
J.
Heo
,
N.
Parihar
,
C. P.
Grigoropoulos
,
P.
Shafer
,
P.
Fay
,
R.
Ramesh
,
S.
Mahapatra
,
J.
Ciston
,
S.
Datta
,
M.
Mohamed
,
C.
Hu
, and
S.
Salahuddin
,
Nature
604
,
65
(
2022
).
9.
S.
Mueller
,
J.
Müller
,
U.
Schroeder
, and
T.
Mikolajick
,
IEEE Trans. Device Mater. Reliab.
13
,
93
(
2013
).
10.
S.
Starschich
,
S.
Menzel
, and
U.
Böttger
,
J. Appl. Phys.
121
,
154102
(
2017
).
11.
K. H.
Xue
,
H. L.
Su
,
Y.
Li
,
H. J.
Sun
,
W. F.
He
,
T. C.
Chang
,
L.
Chen
,
D. W.
Zhang
, and
X. S.
Miao
,
J. Appl. Phys.
124
,
024103
(
2018
).
12.
R.
Cao
,
B.
Song
,
D.
Shang
,
Y.
Yang
,
Q.
Luo
,
S.
Wu
,
Y.
Li
,
Y.
Wang
,
H.
Lv
,
Q.
Liu
, and
M.
Liu
,
IEEE Electron Device Lett.
40
,
1744
(
2019
).
13.
J.
Müller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
,
ECS J. Solid State Sci. Technol.
4
,
N30
(
2015
).
14.
K.
Toprasertpong
,
K.
Tahara
,
Y.
Hikosaka
,
K.
Nakamura
,
H.
Saito
,
M.
Takenaka
, and
S.
Takagi
,
ACS Appl. Mater. Interfaces
14
,
51137
(
2022
).
15.
K.
Shubhakar
,
M.
Bosman
,
O. A.
Neucheva
,
Y. C.
Loke
,
N.
Raghavan
,
R.
Thamankar
,
A.
Ranjan
,
S. J.
O'Shea
, and
K. L.
Pey
,
Microelectron. Reliab.
55
,
1450
(
2015
).
16.
R.
Ranjan
,
K. L.
Pey
,
C. H.
Tung
,
L. J.
Tang
,
B.
Elattari
,
T.
Kauerauf
,
G.
Groeseneken
,
R.
Degraeve
,
D. S.
Ang
, and
L. K.
Bera
,
Microelectron. Eng.
80
,
370
(
2005
).
17.
A.
Ranjan
,
H.
Xu
,
C.
Wang
,
J.
Molina
,
X.
Wu
,
H.
Zhang
,
L.
Sun
,
J.
Chu
, and
K. L.
Pey
,
Appl. Mater. Today
31
,
101739
(
2023
).
18.
Y.
Yao
,
C.
Li
,
Z. L.
Huo
,
M.
Liu
,
C. X.
Zhu
,
C. Z.
Gu
,
X. F.
Duan
,
Y. G.
Wang
,
L.
Gu
, and
R. C.
Yu
,
Nat. Commun.
4
,
2764
(
2013
).
19.
N.
Barrett
,
D. M.
Gottlob
,
C.
Mathieu
,
C.
Lubin
,
J.
Passicousset
,
O.
Renault
, and
E.
Martinez
,
Rev. Sci. Instrum.
87
,
053703
(
2016
).
20.
Y.
Okuda
,
J.
Kawakita
,
T.
Taniuchi
,
H.
Shima
,
A.
Shimizu
,
Y.
Naitoh
,
K.
Kinoshita
,
H.
Akinaga
, and
S.
Shin
,
Jpn. J. Appl. Phys., Part 1
59
,
SGGB02
(
2020
).
21.
Y.
Okuda
,
J.
Kawakita
,
T.
Taniuchi
,
H.
Shima
,
A.
Shimizu
,
Y.
Naitoh
,
K.
Kinoshita
,
H.
Akinaga
, and
S.
Shin
,
Jpn. J. Appl. Phys., Part 1
61
,
SM1001
(
2022
).
22.
R.
Hayakawa
,
S.
Takeiri
,
Y.
Yamada
,
Y.
Wakayama
, and
K.
Fukumoto
,
Adv. Mater.
34
,
2201277
(
2022
).
23.
A.
Locatelli
and
E.
Bauer
,
J. Phys.
20
,
093002
(
2008
).
24.
M. P.
Seah
and
W. A.
Dench
,
Surf. Interface Anal.
1
,
2
(
1979
).
25.
T.
Taniuchi
,
Y.
Kotani
, and
S.
Shin
,
Rev. Sci. Instrum.
86
,
023701
(
2015
).
26.
J.
Wu
,
F.
Mo
,
T.
Saraya
,
T.
Hiramoto
,
M.
Ochi
,
H.
Goto
, and
M.
Kobayashi
,
IEEE Trans. Electron Devices
68
,
6617
(
2021
).
27.
K. Y.
Chen
,
P. H.
Chen
,
R. W.
Kao
,
Y. X.
Lin
, and
Y. H.
Wu
,
IEEE Electron Device Lett.
39
,
87
(
2018
).
28.
W.
Wei
,
W.
Zhang
,
F.
Wang
,
X.
Ma
,
Q.
Wang
,
P.
Sang
,
X.
Zhan
,
Y.
Li
,
L.
Tai
,
Q.
Luo
,
H.
Lv
, and
J.
Chen
, in
2020 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2020
), p.
39.6.1
.
29.
P.
Jiang
,
W.
Wei
,
Y.
Yang
,
Y.
Wang
,
Y.
Xu
,
L.
Tai
,
P.
Yuan
,
Y.
Chen
,
Z.
Gao
,
T.
Gong
,
Y.
Ding
,
S.
Lv
,
Z.
Dang
,
Y.
Wang
,
J.
Yang
,
Q.
Luo
, and
M.
Liu
,
Adv. Electron. Mater.
8
,
2100662
(
2022
).
30.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
,
Adv. Funct. Mater.
26
,
4601
(
2016
).
31.
Z.
Dridi
,
B.
Bouhafs
,
P.
Ruterana
, and
H.
Aourag
,
J. Phys.
14
,
10237
(
2002
).
32.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
33.
W.
Hamouda
,
A.
Pancotti
,
C.
Lubin
,
L.
Tortech
,
C.
Richter
,
T.
Mikolajick
,
U.
Schroeder
, and
N.
Barrett
,
J. Appl. Phys.
127
,
064105
(
2020
).
34.
G.-S.
Park
,
Y. B.
Kim
,
S. Y.
Park
,
X. S.
Li
,
S.
Heo
,
M.-J.
Lee
,
M.
Chang
,
J. H.
Kwon
,
M.
Kim
,
U.-I.
Chung
,
R.
Dittmann
,
R.
Waser
, and
K.
Kim
,
Nat. Commun.
4
,
2382
(
2013
).
35.
K.
Liao
,
B.
Zeng
,
Q.
Sun
,
Q.
Chen
,
M.
Liao
,
C.
Qiu
,
Z.
Zhang
, and
Y.
Zhou
,
IEEE Electron Device Lett.
40
,
1868
(
2019
).

Supplementary Material

You do not currently have access to this content.