We report the observation of the orbital counterpart of the spin Hall magnetoresistance (SMR): the orbital Hall magnetoresistance (OMR). We measured angular-dependent longitudinal magnetoresistance for Ni/Ti bilayer and Ni single-layer films by rotating a magnetic field along three orthogonal planes. When the magnetic field is rotated in the plane perpendicular to the applied current direction, the angular dependence of the magnetoresistance in the Ni/Ti bilayers is consistent with the prediction of the SMR and OMR, whereas that in the Ni single-layer film can be attributed to the geometrical size effect of the anisotropic magnetoresistance. In the Ni/Ti bilayers, the magnetoresistance ratio is found to be five orders of magnitude larger than the prediction of the SMR, indicating that the OMR plays a dominant role in this system.

1.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
(
2015
).
2.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
, “
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
,
035004
(
2019
).
3.
J.
Ryu
,
S.
Lee
,
K.-J.
Lee
, and
B.-G.
Park
, “
Current-induced spin-orbit torques for spintronic applications
,”
Adv. Mater.
32
,
1907148
(
2020
).
4.
S.
Manipatruni
,
D. E.
Nikonov
,
C.-C.
Lin
,
T. A.
Gosavi
,
H.
Liu
,
B.
Prasad
,
Y.-L.
Huang
,
E.
Bonturim
,
R.
Ramesh
, and
I. A.
Young
, “
Scalable energy-efficient magnetoelectric spin–orbit logic
,”
Nature
565
,
35
(
2019
).
5.
V. T.
Pham
,
I.
Groen
,
S.
Manipatruni
,
W. Y.
Choi
,
D. E.
Nikonov
,
E.
Sagasta
,
C.-C.
Lin
,
T. A.
Gosavi
,
A.
Marty
,
L. E.
Hueso
,
I. A.
Young
, and
F.
Casanova
, “
Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures
,”
Nat. Electron.
3
,
309
(
2020
).
6.
H.
Nakayama
,
M.
Althammer
,
Y.-T.
Chen
,
K.
Uchida
,
Y.
Kajiwara
,
D.
Kikuchi
,
T.
Ohtani
,
S.
Geprägs
,
M.
Opel
,
S.
Takahashi
,
R.
Gross
,
G. E. W.
Bauer
,
S. T. B.
Goennenwein
, and
E.
Saitoh
, “
Spin Hall magnetoresistance induced by a nonequilibrium proximity effect
,”
Phys. Rev. Lett.
110
,
206601
(
2013
).
7.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
, “
Orbitronics: The intrinsic orbital current in p-doped silicon
,”
Phys. Rev. Lett.
95
,
066601
(
2005
).
8.
T.
Tanaka
,
H.
Kontani
,
M.
Naito
,
T.
Naito
,
D. S.
Hirashima
,
K.
Yamada
, and
J.
Inoue
, “
Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals
,”
Phys. Rev. B
77
,
165117
(
2008
).
9.
H.
Kontani
,
T.
Tanaka
,
D. S.
Hirashima
,
K.
Yamada
, and
J.
Inoue
, “
Giant orbital Hall effect in transition metals: Origin of large spin and anomalous Hall effects
,”
Phys. Rev. Lett.
102
,
016601
(
2009
).
10.
D.
Go
,
D.
Jo
,
C.
Kim
, and
H.-W.
Lee
, “
Intrinsic spin and orbital Hall effects from orbital texture
,”
Phys. Rev. Lett.
121
,
086602
(
2018
).
11.
D.
Jo
,
D.
Go
, and
H.-W.
Lee
, “
Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals
,”
Phys. Rev. B
98
,
214405
(
2018
).
12.
L.
Salemi
and
P. M.
Oppeneer
, “
First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals
,”
Phys. Rev. Mater.
6
,
095001
(
2022
).
13.
D.
Lee
,
D.
Go
,
H.-J.
Park
,
W.
Jeong
,
H.-W.
Ko
,
D.
Yun
,
D.
Jo
,
S.
Lee
,
G.
Go
,
J. H.
Oh
,
K.-J.
Kim
,
B.-G.
Park
,
B.-C.
Min
,
H. C.
Koo
,
H.-W.
Lee
,
O.
Lee
, and
K.-J.
Lee
, “
Orbital torque in magnetic bilayers
,”
Nat. Commun.
12
,
6710
(
2021
).
14.
S.
Lee
,
M.-G.
Kang
,
D.
Go
,
D.
Kim
,
J.-H.
Kang
,
T.
Lee
,
G.-H.
Lee
,
J.
Kang
,
N. J.
Lee
,
Y.
Mokrousov
,
S.
Kim
,
K.-J.
Kim
,
K.-J.
Lee
, and
B.-G.
Park
, “
Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching
,”
Commun. Phys.
4
,
234
(
2021
).
15.
H.
Hayashi
,
D.
Jo
,
D.
Go
,
T.
Gao
,
S.
Haku
,
Y.
Mokrousov
,
H.-W.
Lee
, and
K.
Ando
, “
Observation of long-range orbital transport and giant orbital torque
,”
Commun. Phys.
6
,
32
(
2023
).
16.
Y.-G.
Choi
,
D.
Jo
,
K.-H.
Ko
,
D.
Go
,
K.-H.
Kim
,
H. G.
Park
,
C.
Kim
,
B.-C.
Min
,
G.-M.
Choi
, and
H.-W.
Lee
, “
Observation of the orbital Hall effect in a light metal Ti
,”
Nature
619
,
52
(
2023
).
17.
L.
Liao
,
F.
Xue
,
L.
Han
,
J.
Kim
,
R.
Zhang
,
L.
Li
,
J.
Liu
,
X.
Kou
,
C.
Song
,
F.
Pan
, and
Y.
Otani
, “
Efficient orbital torque in polycrystalline ferromagnetic-metal/ Ru / Al 2 O 3 stacks: Theory and experiment
,”
Phys. Rev. B
105
,
104434
(
2022
).
18.
J.
Kim
,
D.
Go
,
H.
Tsai
,
D.
Jo
,
K.
Kondou
,
H.-W.
Lee
, and
Y.
Otani
, “
Nontrivial torque generation by orbital angular momentum injection in ferromagnetic-metal/Cu/Al2O3 trilayers
,”
Phys. Rev. B
103
,
L020407
(
2021
).
19.
G.
Sala
and
P.
Gambardella
, “
Giant orbital Hall effect and orbital-to-spin conversion in 3d, 5d, and 4f metallic heterostructures
,”
Phys. Rev. Res.
4
,
033037
(
2022
).
20.
A.
Bose
,
F.
Kammerbauer
,
R.
Gupta
,
D.
Go
,
Y.
Mokrousov
,
G.
Jakob
, and
M.
Kläui
, “
Detection of long-range orbital-Hall torques
,”
Phys. Rev. B
107
,
134423
(
2023
).
21.
R.
Fukunaga
,
S.
Haku
,
H.
Hayashi
, and
K.
Ando
, “
Orbital torque originating from orbital Hall effect in Zr
,”
Phys. Rev. Res.
5
,
023054
(
2023
).
22.
S.
Ding
,
A.
Ross
,
D.
Go
,
L.
Baldrati
,
Z.
Ren
,
F.
Freimuth
,
S.
Becker
,
F.
Kammerbauer
,
J.
Yang
,
G.
Jakob
,
Y.
Mokrousov
, and
M.
Kläui
, “
Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques
,”
Phys. Rev. Lett.
125
,
177201
(
2020
).
23.
S.
Ding
,
Z.
Liang
,
D.
Go
,
C.
Yun
,
M.
Xue
,
Z.
Liu
,
S.
Becker
,
W.
Yang
,
H.
Du
,
C.
Wang
,
Y.
Yang
,
G.
Jakob
,
M.
Kläui
,
Y.
Mokrousov
, and
J.
Yang
, “
Observation of the orbital Rashba-Edelstein magnetoresistance
,”
Phys. Rev. Lett.
128
,
067201
(
2022
).
24.
S.
Ding
,
P.
Noël
,
G. K.
Krishnaswamy
, and
P.
Gambardella
, “
Unidirectional orbital magnetoresistance in light-metal–ferromagnet bilayers
,”
Phys. Rev. Res.
4
,
L032041
(
2022
).
25.
H.
Hayashi
and
K.
Ando
, “
Observation of orbital pumping
,” arXiv:2304.05266 (
2023
).
26.
M.
Taniguchi
,
H.
Hayashi
,
N.
Soya
, and
K.
Ando
, “
Nonlocal orbital torques in magnetic multilayers
,”
Appl. Phys. Express
16
,
043001
(
2023
).
27.
S.
Cho
,
S.-h. C.
Baek
,
K.-D.
Lee
,
Y.
Jo
, and
B.-G.
Park
, “
Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures
,”
Sci. Rep.
5
,
14668
(
2015
).
28.
W.-C.
Peng
,
Y.-C.
Chen
,
J.-L.
He
,
S.-L.
Ou
,
R.-H.
Horng
, and
D.-S.
Wuu
, “
Tunability of p- and n-channel TiOx thin film transistors
,”
Sci. Rep.
8
,
9255
(
2018
).
29.
T.
McGuire
and
R.
Potter
, “
Anisotropic magnetoresistance in ferromagnetic 3d alloys
,”
IEEE Trans. Magn.
11
,
1018
(
1975
).
30.
W.
Gil
,
D.
Görlitz
,
M.
Horisberger
, and
J.
Kötzler
, “
Magnetoresistance anisotropy of polycrystalline cobalt films: Geometrical-size and domain effects
,”
Phys. Rev. B
72
,
134401
(
2005
).
31.
J.
Kim
,
P.
Sheng
,
S.
Takahashi
,
S.
Mitani
, and
M.
Hayashi
, “
Spin Hall magnetoresistance in metallic bilayers
,”
Phys. Rev. Lett.
116
,
097201
(
2016
).
32.
C.
Du
,
H.
Wang
,
F.
Yang
, and
P. C.
Hammel
, “
Systematic variation of spin-orbit coupling with d-orbital filling: Large inverse spin Hall effect in 3d transition metals
,”
Phys. Rev. B
90
,
140407
(
2014
).
33.
W.
Li
,
J.
Zhu
,
H.
Li
,
Z.
Zhang
,
X.
Ma
,
X.
Yang
,
H.
Wang
, and
Z.
Wang
, “
Ni layer thickness dependence of the interface structures for Ti/Ni/Ti trilayer studied by X-ray standing waves
,”
ACS Appl. Mater. Interfaces
5
,
404
(
2013
).
34.
J.
Yi
,
Y.
Zhou
,
J.
Ding
,
G.
Chow
,
Z.
Dong
,
T.
White
,
X.
Gao
,
A.
Wee
, and
X.
Yu
, “
An investigation of structure, magnetic properties and magnetoresistance of Ni films prepared by sputtering
,”
J. Magn. Magn. Mater.
284
,
303
(
2004
).
35.
H.
Nakayama
,
Y.
Kanno
,
H.
An
,
T.
Tashiro
,
S.
Haku
,
A.
Nomura
, and
K.
Ando
, “
Rashba-Edelstein magnetoresistance in metallic heterostructures
,”
Phys. Rev. Lett.
117
,
116602
(
2016
).
36.
D.
Go
,
D.
Jo
,
K.-W.
Kim
,
S.
Lee
,
M.-G.
Kang
,
B.-G.
Park
,
S.
Blügel
,
H.-W.
Lee
, and
Y.
Mokrousov
, “
Long-range orbital torque by momentum-space hotspots
,”
Phys. Rev. Lett.
130
,
246701
(
2023
).
You do not currently have access to this content.