Changes in the resistance of Ti/HfOx synapses are known to be governed by a thin-oxide barrier associated with the oxidation/reduction of a Hf-rich conducting filament (CF). However, experimental characterization of the CF is challenging. Critical physical properties and processes, such as the barrier location, time-dependent thickness during analog pulsing, and the temperature-effect on current, need to be better established. In this work, a compact model based on Trap-Assisted-Tunneling and Ohmic transport is utilized to analyze the analog switching of HfOx synapses. The model agrees well with the experimentally observed current–voltage relation and its temperature dependence. The extracted barrier heights during analog pulsing are consistent with a barrier situated near the reset anode; the electrode is opposite to the Ti oxygen-reservoir layer. A Finite Element Analysis simulation, which incorporates oxygen-vacancy migration, independently supports this conclusion. The model further permits extraction of the barrier thickness in relation to the analog pulses.

1.
S.
Menzel
,
M.
Waters
,
A.
Marchewka
,
U.
Böttger
,
R.
Dittmann
, and
R.
Waser
,
Adv. Funct. Mater.
21
(
23
),
4487
4492
(
2011
).
2.
M. P.
West
,
P.
Basnet
,
D. G.
Pahinkar
,
R. H.
Montgomery
,
S.
Graham
, and
E. M.
Vogel
,
Appl. Phys. Lett.
116
(
6
),
063504
(
2020
).
3.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
,
Nat. Nanotechnol.
3
(
7
),
429
433
(
2008
).
4.
C.-C.
Lin
,
B.-C.
Tu
,
C.-H.
Lin
, and
T.-Y.
Tseng
,
IEEE Electron Device Lett.
27
(
9
),
725
727
(
2006
).
5.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviya
,
P.
Mazumder
, and
W.
Lu
,
Nano Lett.
10
(
4
),
1297
1301
(
2010
).
6.
S.
Yu
,
Y.
Wu
,
R.
Jeyasingh
,
D.
Kuzum
, and
H.-S. P.
Wong
,
IEEE Trans. Electron Devices
58
(
8
),
2729
2737
(
2011
).
7.
N.
Gong
,
M. J.
Rasch
,
S.
Seo
,
A.
Gasasira
,
P.
Solomon
,
V.
Bragaglia
,
S.
Consiglio
,
H.
Higuchi
,
C.
Park
,
K.
Brew
,
P. C.
Jamison
,
C.
Catano
,
I.
Saraf
,
F. F.
Athena
,
C.
Silvestre
,
X.
Liu
,
B.
Khan
,
N.
Jain
,
S.
Mcdermott
,
R. C.
Johnson
,
I. C.
Estrada-Raygoza
,
J.
Li
,
T.
Gokmen
,
N.
Li
,
R. N.
Pujari
,
F.
Carta
,
H.
Miyazoe
,
M. M.
Frank
,
D. P.
Koty
,
Q.
Yang
,
R. D.
Clark
,
K.
Tapily
,
C. S.
Wajda
,
A.
Mosden
,
J.
Shearer
,
A.
Metz
,
S.
Teehan
,
N.
Saulnier
,
B. J.
Offrein
,
T.
Tsunomura
,
G. J.
Leusink
,
V.
Narayanan
, and
T.
Ando
, in
International Electron Devices Meeting (IEDM)
,
2022
, Vol.
33
.
8.
D.
Niraula
and
V.
Karpov
,
J. Appl. Phys.
124
(
17
),
174502
(
2018
).
9.
V.
Ostrovskii
,
P.
Fedoseev
,
Y.
Bobrova
, and
D.
Butusov
,
Nanomaterials
12
(
1
),
63
(
2021
).
10.
L.-T.
Wang
,
Y.-W.
Chang
, and
K.-T. T.
Cheng
,
Electronic Design Automation: Synthesis, Verification, and Test
(
Morgan Kaufmann
,
2009
).
11.
E.
Miranda
,
J.
Muñoz-Gorriz
,
J.
Suñé
, and
K.
Fröhlich
,
Microelectron. Eng.
215
,
110998
(
2019
).
12.
S.
Kvatinsky
,
K.
Talisveyberg
,
D.
Fliter
,
A.
Kolodny
,
U. C.
Weiser
, and
E. G.
Friedman
, in
IEEE 27th Convention of Electrical and Electronics Engineers in Israel
,
2012
.
13.
C.
Yakopcic
,
T. M.
Taha
,
G.
Subramanyam
, and
R. E.
Pino
,
IEEE Trans. Comput-Aided. Des. Integr. Circuits Syst.
32
(
8
),
1201
1214
(
2013
).
14.
F.
Garcia-Redondo
,
R. P.
Gowers
,
A.
Crespo-Yepes
,
M.
Lopez-Vallejo
, and
L.
Jiang
,
IEEE Trans. Circuits Syst. I
63
(
8
),
1255
1264
(
2016
).
15.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
,
Nat. Nanotechnol.
8
(
1
),
13
24
(
2013
).
16.
F. F.
Athena
,
M. P.
West
,
J.
Hah
,
R.
Hanus
,
S.
Graham
, and
E.
Vogel
,
J. Mater. Chem. C
10
(
15
),
5896
5904
(
2022
).
17.
P.
Basnet
,
E. C.
Anderson
,
F. F.
Athena
,
B.
Chakrabarti
,
M. P.
West
, and
E. M.
Vogel
,
ACS Appl. Electron. Mater.
5
(
3
),
1859
1865
(
2023
).
18.
M. P.
West
,
G.
Pavlidis
,
R. H.
Montgomery
,
F. F.
Athena
,
M. S.
Jamil
,
A.
Centrone
,
S.
Graham
, and
E. M.
Vogel
,
J. Appl. Phys.
133
(
18
),
185101
(
2023
).
19.
K. M.
Kim
,
B. J.
Choi
,
B. W.
Koo
,
S.
Choi
,
D. S.
Jeong
, and
C. S.
Hwang
,
Electrochem. Solid-State Lett.
9
(
12
),
G343
(
2006
).
20.
L.
Larcher
,
IEEE Trans. Electron Devices
50
(
5
),
1246
1253
(
2003
).
21.
G.
Bersuker
,
D.
Gilmer
,
D.
Veksler
,
P.
Kirsch
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
K.
McKenna
,
A.
Shluger
, and
V.
Iglesias
,
J. Appl. Phys.
110
(
12
),
124518
(
2011
).
22.
G.
Bersuker
,
D. C.
Gilmer
,
D.
Veksler
,
J. H.
Yum
,
H. K.
Park
,
S.
Lian
,
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
K. P.
McKenna
,
A. L.
Shluger
,
V.
Iglesias
,
M.
Porti
,
M.
Nafría
,
W.
Taylor
,
P. D.
Kirsch
, and
R.
Jammy
, in
International Electron Devices Meeting
,
2010
.
23.
R.
Burch
,
F. N.
Najm
,
P.
Yang
, and
T. N.
Trick
,
IEEE Trans. Very Large Scale Integr. Syst.
1
(
1
),
63
71
(
1993
).
24.
L.
Larcher
,
A.
Padovani
, and
P.
Pavan
, in
Nanotechnology 2012: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational
(
NSTI
,
2012
), pp.
809
814
.
25.
X.
Wu
,
S.
Mei
,
M.
Bosman
,
N.
Raghavan
,
X.
Zhang
,
D.
Cha
,
K.
Li
, and
K. L.
Pey
,
Adv. Electron. Mater.
1
(
11
),
1500130
(
2015
).
26.
K.
Bejtka
,
G.
Milano
,
C.
Ricciardi
,
C. F.
Pirri
, and
S.
Porro
,
ACS Appl. Mater. Interfaces
12
(
26
),
29451
29460
(
2020
).
27.
C.
Li
,
B.
Gao
,
Y.
Yao
,
X.
Guan
,
X.
Shen
,
Y.
Wang
,
P.
Huang
,
L.
Liu
,
X.
Liu
, and
J.
Li
,
Adv. Mater.
29
(
10
),
1602976
(
2017
).
28.
Y.
Zhuo
,
R.
Midya
,
W.
Song
,
Z.
Wang
,
S.
Asapu
,
M.
Rao
,
P.
Lin
,
H.
Jiang
,
Q.
Xia
, and
R. S.
Williams
,
Adv. Electron. Mater.
8
(
8
),
2100696
(
2022
).
29.
F. F.
Athena
,
M. P.
West
,
P.
Basnet
,
J.
Hah
,
Q.
Jiang
,
W.-C.
Lee
, and
E. M.
Vogel
,
J. Appl. Phys.
131
(
20
),
204901
(
2022
).
30.
J.
Hah
,
M. P.
West
,
F. F.
Athena
,
R.
Hanus
,
E. M.
Vogel
, and
S.
Graham
,
J. Mater. Sci.
57
,
929
(
2022
).
31.
G.
Bersuker
,
D.
Gilmer
, and
D.
Veksler
, in
Advances in Non-Volatile Memory and Storage Technology
(
Elsevier
,
2019
), pp.
35
102
.
32.
Z.
Fang
,
X. P.
Wang
,
J.
Sohn
,
B. B.
Weng
,
Z. P.
Zhang
,
Z. X.
Chen
,
Y. Z.
Tang
,
G.-Q.
Lo
,
J.
Provine
, and
S. S.
Wong
,
IEEE Electron Device Lett.
35
(
9
),
912
914
(
2014
).
33.
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
R.
Southwick
,
W.
Knowlton
, and
G.
Bersuker
,
IEEE Trans. Electron Devices
58
(
9
),
2878
2887
(
2011
).
34.
J. J.
Moré
,
B. S.
Garbow
, and
K. E.
Hillstrom
, User guide for minpack-1. [in fortran]. No. ANL-80-74. Argonne National Lab.(ANL), Argonne, IL (United States), 1980, https://www.osti.gov/biblio/6997568.
35.
Y.
Zheng
,
A. T.
Wee
,
K.
Pey
,
C.
Troadec
,
S.
O'shea
, and
N.
Chandrasekhar
,
Appl. Phys. Lett.
90
(
14
),
142915
(
2007
).
36.
K.
Tse
,
D.
Liu
, and
J.
Robertson
,
Phys. Rev. B
81
(
3
),
035325
(
2010
).
37.
L.
Pantisano
,
V.
Afanas'Ev
,
S.
Cimino
,
C.
Adelmann
,
L.
Goux
,
Y.
Chen
,
J.
Kittl
,
D.
Wouters
, and
M.
Jurczak
,
Microelectron. Eng.
88
(
7
),
1251
1254
(
2011
).
38.
A.
Padovani
,
L.
Larcher
,
O.
Pirrotta
,
L.
Vandelli
, and
G.
Bersuker
,
IEEE Trans. Electron Devices
62
(
6
),
1998
2006
(
2015
).
39.
F. F.
Athena
,
M. P.
West
,
J.
Hah
,
S.
Graham
, and
E. M.
Vogel
,
ACS Appl. Electron. Mater.
5
,
3048
(
2023
).

Supplementary Material

You do not currently have access to this content.