Reversible computation has been proposed as a future paradigm for energy efficient computation, but so far few implementations have been realized in practice. Quantum circuits, running on quantum computers, are one construct known to be reversible. In this work, we provide a proof-of-principle of classical logical gates running on quantum technologies. In particular, we propose and realize experimentally, Toffoli and Half-Adder circuits suitable for classical computation, using radio frequency-controlled 171Yb+ ions in a macroscopic linear Paul-trap as qubits. We analyze the energy required to operate the logic gates, both theoretically and experimentally, with a focus on the control energy. We identify bottlenecks and possible improvements in future platforms for energetically efficient computation, e.g., trap chips with integrated antennas and cavity qed. Our experimentally verified energetic model also fills a gap in the literature of the energetics of quantum information and outlines the path for its detailed study, as well as its potential applications to classical computing.

1.
E.
Masanet
,
A.
Shehabi
,
N.
Lei
,
S.
Smith
, and
J.
Koomey
, “
Recalibrating global data center energy-use estimates
,”
Science
367
,
984
986
(
2020
).
2.
S.
Naffziger
and
J.
Koomey
,
Energy Efficiency of Computing: What's Next?
(
Electronic Design
,
2016
).
3.
R.
Landauer
, “
Irreversibility and heat generation in the computing process
,”
IBM J. Res. Dev.
5
,
183
191
(
1961
).
4.
Low Power Design Methodologies
edited by
J. M.
Rabaey
and
M.
Pedram
(
Springer US
,
Boston, MA
,
1996
).
5.
J. G.
Koomey
, “
A primer on the energy efficiency of computing
,”
AIP Conf. Proc.
1652
,
82
89
(
2015
).
6.
J.
Ni
and
X.
Bai
, “
A review of air conditioning energy performance in data centers
,”
Renewable Sustainable Energy Rev.
67
,
625
640
(
2017
).
7.
E. F.
Fredkin
and
T.
Toffoli
, “
Design principles for achieving high-performance submicron digital technologies
,” in
Collision-Based Computing
(
Springer-Verlag
,
Berlin, Heidelberg
,
2001
), pp.
27
46
.
8.
E.
Fredkin
and
T.
Toffoli
, “
Conservative logic
,”
Int. J. Theor. Phys.
21
,
219
253
(
1982
).
9.
C. L.
Seitz
,
A. H.
Frey
,
S.
Mattisson
,
S. D.
Rabin
,
D. A.
Speck
, and
J. L.
Van de Snepscheut
, “
Hot clock NMOS
,”
Computer Science Technical Reports
,
1985
.
10.
J.
Koller
and
W.
Athas
, “
Adiabatic switching, low energy computing, and the physics of storing and erasing information
,” in
Workshop on Physics and Computation
(
IEEE
,
1992
) pp.
267
270
.
11.
J.
Hall
, “
An electroid switching model for reversible computer architectures
,” in
Workshop on Physics and Computation
(
IEEE
,
1992
), pp.
237
247
.
12.
R.
Merkle
, “
Towards practical reversible logic
,” in
Workshop on Physics and Computation
(
IEEE
,
1992
), pp.
227
228
.
13.
R. C.
Merkle
, “
Reversible electronic logic using switches
,”
Nanotechnology
4
,
21
40
(
1993
).
14.
K. E.
Drexler
, “
Molecular machinery and manufacturing with applications to computation
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
Cambridge, MA
,
1992
).
15.
K. E.
Drexler
,
Nanosystems: Molecular Machinery, Manufacturing, and Computation
(
John Wiley & Sons, Inc
.,
1992
).
16.
R. C.
Merkle
,
R. A.
Freitas
, Jr.
,
T.
Hogg
,
T. E.
Moore
,
M. S.
Moses
, and
J.
Ryley
, “
Molecular mechanical computing systems
,”
IMM Report
(
Institute for Molecular Manufacturing
,
Palo Alto, CA
,
2016
).
17.
R.
Merkle
,
R.
Freitas
,
T.
Hogg
,
T.
Moore
,
M.
Moses
, and
J.
Ryley
, “
Mechanical computing systems using only links and rotary joints
,”
J. Mech. Rob.
10
, 061006 (
2018
).
18.
T.
Hogg
,
M. S.
Moses
, and
D. G.
Allis
, “
Evaluating the friction of rotary joints in molecular machines
,”
Mol. Syst. Des. Eng.
2
,
235
252
(
2017
).
19.
K.
Likharev
, “
Dynamics of some single flux quantum devices: I. Parametric quantron
,”
IEEE Trans. Magn.
13
,
242
244
(
1977
).
20.
M.
Hosoya
,
W.
Hioe
,
J.
Casas
,
R.
Kamikawai
,
Y.
Harada
,
Y.
Wada
,
H.
Nakane
,
R.
Suda
, and
E.
Goto
, “
Quantum flux parametron: A single quantum flux device for Josephson supercomputer
,”
IEEE Trans. Appl. Supercond.
1
,
77
89
(
1991
).
21.
J.
Ren
and
V. K.
Semenov
, “
Progress with physically and logically reversible superconducting digital circuits
,”
IEEE Trans. Appl. Supercond.
21
,
780
786
(
2011
).
22.
C.
Lent
,
P.
Tougaw
, and
W.
Porod
, “
Quantum cellular automata: The physics of computing with arrays of quantum dot molecules
,” in
Proceedings Workshop on Physics and Computation. PhysComp'94
(
IEEE
,
1994
), pp.
5
13
.
23.
M. P.
Frank
, “
Back to the future: The case for reversible computing
,” arXiv:1803.02789 (
2018
).
24.
P.
Benioff
, “
The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines
,”
J. Stat. Phys.
22
,
563
591
(
1980
).
25.
P.
Benioff
, “
Quantum mechanical models of turing machines that dissipate no energy
,”
Phys. Rev. Lett.
48
,
1581
1585
(
1982
).
26.
J. A. P.
Moutinho
,
M.
Pezzutto
,
S. S.
Pratapsi
,
F. F.
da Silva
,
S.
De Franceschi
,
S.
Bose
,
A. T.
Costa
, and
Y.
Omar
, “
Quantum dynamics for energetic advantage in a charge-based classical full adder
,”
PRX Energy
2
,
033002
(
2023
).
27.
M. M.
Mano
and
C. R.
Kime
,
Logic and Computer Design Fundamentals
(
Prentice-Hall, Inc
.,
1997
).
28.
D.
Jaschke
and
S.
Montangero
, “
Is quantum computing green? an estimate for an energy-efficiency quantum advantage
,” arXiv:2205.12092v2 (
2022
).
29.
A.
Auffèves
, “
Quantum technologies need a quantum energy initiative
,”
PRX Quantum
3
,
020101
(
2022
).
30.
B.
Antonio
,
J.
Randall
,
W. K.
Hensinger
,
G. W.
Morley
, and
S.
Bose
, “
Classical computation by quantum bits
,” arXiv:1509.03420 [quant-ph] (
2015
).
31.
C.
Wunderlich
, “
Conditional spin resonance with trapped ions
,” in
Laser Physics at the Limits
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2002
), pp.
261
273
.
32.
A.
Khromova
,
C.
Piltz
,
B.
Scharfenberger
,
T. F.
Gloger
,
M.
Johanning
,
A. F.
Varón
, and
C.
Wunderlich
, “
Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient
,”
Phys. Rev. Lett.
108
,
220502
(
2012
).
33.
C.
Piltz
,
T.
Sriarunothai
,
A.
Varón
, and
C.
Wunderlich
, “
A trapped-ion-based quantum byte with 10e-5 next-neighbour cross-talk
,”
Nat. Commun.
5
,
4679
(
2014
).
34.
T.
Sriarunothai
,
G. S.
Giri
,
S.
Wölk
, and
C.
Wunderlich
, “
Radio frequency sideband cooling and sympathetic cooling of trapped ions in a static magnetic field gradient
,”
J. Mod. Opt.
65
,
560
567
(
2018
).
35.
C.
Piltz
,
B.
Scharfenberger
,
A.
Khromova
,
A. F.
Varón
, and
C.
Wunderlich
, “
Protecting conditional quantum gates by robust dynamical decoupling
,”
Phys. Rev. Lett.
110
,
200501
(
2013
).
36.
A. A.
Maudsley
, “
Modified Carr-Purcell-Meiboom-Gill sequence for NMR Fourier imaging applications
,”
J. Magn. Reson.
69
,
488
491
(
1986
).
37.
G. T.
Genov
,
D.
Schraft
,
N. V.
Vitanov
, and
T.
Halfmann
, “
Arbitrarily accurate pulse sequences for robust dynamical decoupling
,”
Phys. Rev. Lett.
118
,
133202
(
2017
).
38.
A.
Khromova
, “
Quantum gates with trapped ions using magnetic gradient induced coupling
,” Ph.D. thesis (
University of Siegen
,
2012
).
39.
M.
Ježek
,
J.
Fiurášek
, and
Z. C. V.
Hradil
, “
Quantum inference of states and processes
,”
Phys. Rev. A
68
,
012305
(
2003
).
40.
E. O.
Kiktenko
,
D. O.
Norkin
, and
A. K.
Fedorov
, “
Confidence polytopes for quantum process tomography
,”
New J. Phys.
23
,
123022
(
2021
).
41.
D. T. C.
Allcock
,
T. P.
Harty
,
C. J.
Ballance
,
B. C.
Keitch
,
N. M.
Linke
,
D. N.
Stacey
, and
D. M.
Lucas
, “
A microfabricated ion trap with integrated microwave circuitry
,”
Appl. Phys. Lett.
102
,
044103
(
2013
).
42.
S.
Haroche
,
M.
Brune
, and
J. M.
Raimond
, “
From cavity to circuit quantum electrodynamics
,”
Nat. Phys.
16
,
243
246
(
2020
).
43.
J.
Gea-Banacloche
, “
Minimum energy requirements for quantum computation
,”
Phys. Rev. Lett.
89
,
217901
(
2002
).
44.
W. M.
Itano
, “
Comment on “some implications of the quantum nature of laser fields for quantum computations”
,”
Phys. Rev. A
68
,
046301
(
2003
).
45.
J.
Gea-Banacloche
and
M.
Miller
, “
Quantum logic with quantized control fields beyond the 1 / n ¯ limit: Mathematically possible, physically unlikely
,”
Phys. Rev. A
78
,
032331
(
2008
).
46.
J.
Stevens
,
D.
Szombati
,
M.
Maffei
,
C.
Elouard
,
R.
Assouly
,
N.
Cottet
,
R.
Dassonneville
,
Q.
Ficheux
,
S.
Zeppetzauer
,
A.
Bienfait
,
A. N.
Jordan
,
A.
Auffèves
, and
B.
Huard
, “
Energetics of a single qubit gate
,”
Phys. Rev. Lett.
129
,
110601
(
2022
).

Supplementary Material

You do not currently have access to this content.