A device for electromagnetic energy absorption and conversion was investigated as an electromagnetic energy harvester, which is based on a four-ring multi-resistance unit. The device can convert microwave energy to thermal energy and then to electrical energy through the Bi2Te3 thermoelectric material adhered to the load resistance. The energy harvesting efficiency, power loss distribution, and current density distribution of the harvester were analyzed. In addition, the energy harvesting efficiency of the unit under different incident angles and polarization angles was studied, and the effect of incident power on the temperature and energy conversion efficiency of the unit was analyzed. The simulation results showed that the energy harvesting efficiency of the harvester reaches 99.5% at 5.8 GHz. Each unit in the harvester can generate an output voltage of 171.8 mV under 7 W incident wave power, and the maximum output power is 9.71 mW. To verify the effectiveness of this method, a 5 × 5 unit array model was fabricated and measured, and the measurement results were consistent with the simulation results.

1.
Z.
Wang
,
P.
Li
,
R.
Song
,
W.
Qian
,
H.
Zhou
,
Q.
Wang
,
Y.
Wang
,
X.
Zeng
,
L.
Ren
,
S.
Yan
,
S.
Mu
, and
D.
He
,
Sci. Bull.
65
(
16
),
1363
(
2020
).
2.
A.
Raj
and
D.
Steingart
,
J. Electrochem. Soc.
165
(
8
),
B3130
(
2018
).
3.
X.
Gu
,
L.
Grauwin
,
D.
Dousset
,
S.
Hemour
, and
K.
Wu
,
IEEE Internet Things J.
8
(
17
),
13209
(
2021
).
4.
Q.
Yang
,
H.
Xiong
,
J. H.
Deng
,
B. X.
Wang
,
W. X.
Peng
, and
H. Q.
Zhang
,
Appl. Phys. Lett.
122
(
25
),
253901
(
2023
).
5.
Y.
Wang
,
N. N.
Lu
,
H. C.
Sun
, and
R.
Ren
,
Micromachines
14
(
5
),
1071
(
2023
).
6.
C.
Rong
,
C.
Lu
,
Y.
Zeng
,
X.
Tao
,
X.
Liu
,
R.
Liu
,
X.
He
, and
M.
Liu
,
IET Power Electron.
14
(
9
),
1541
(
2021
).
7.
R.
Kumar
,
M.
Kumar
,
J. S.
Chohan
, and
S.
Kumar
,
Mater. Today: Proc.
56
,
3016
(
2022
).
8.
B.
Gao
,
M. M. F.
Yuen
, and
T. T.
Ye
,
Sci. Rep.
7
(
1
),
45108
(
2017
).
9.
R.
Agrahari
,
S.
Singh
,
D.
Samantaray
,
B.
Kumar
,
S.
Bhattacharyya
,
M.
Mahto
, and
P. K.
Jain
,
Microwave Opt. Technol. Lett.
65
(
8
),
2252
(
2023
).
10.
H.
Xiong
,
J. S.
Hong
,
C. M.
Luo
, and
L. L.
Zhong
,
J. Appl. Phys.
114
(
6
),
064109
(
2013
).
11.
M.
Suo
,
H.
Xiong
,
X. K.
Li
,
Q. F.
Liu
, and
H. Q.
Zhang
,
Results Phys.
46
,
106265
(
2023
).
12.
C.
He
and
Z.
Song
,
Opt. Express
30
(
14
),
25498
(
2022
).
13.
Z.
Zhou
and
Z.
Song
,
Opt. Laser Technol.
153
,
108278
(
2022
).
14.
Z.
Pan
,
Z.
Zhou
, and
Z.
Song
,
Opt. Laser Technol.
159
,
109036
(
2023
).
15.
C.
Huang
,
C.-J.
Guo
,
Y.
Yuan
, and
J.
Ding
,
Antennas Wireless Propag. Lett.
22
(
1
),
154
(
2023
).
16.
H.
Qi
and
H.
Liu
,
Antennas Wireless Propag. Lett.
22
(
8
),
1798
(
2023
).
17.
X.
Wang
,
Opt. Express
28
(
15
),
22630
(
2020
).
You do not currently have access to this content.