Resistive switching in thin films has been widely studied in a broad range of materials. Yet, the mechanisms behind electroresistive switching have been persistently difficult to decipher and control, in part due to their non-equilibrium nature. Here, we demonstrate new experimental approaches that can probe resistive switching phenomena, utilizing amorphous TaOx as a model material system. Specifically, we applied scanning microwave impedance microscopy and cathodoluminescence (CL) microscopy as direct probes of conductance and electronic structure, respectively. These methods provide direct evidence of the electronic state of TaOx despite its amorphous nature. For example, CL identifies characteristic impurity levels in TaOx, in agreement with first principles calculations. We applied these methods to investigate He-ion-beam irradiation as a path to activate conductivity of materials and enable electroforming-free control over resistive switching. However, we find that even though He-ions begin to modify the nature of bonds even at the lowest doses, the films' conductive properties exhibit remarkable stability with large displacement damage and they are driven to metallic states only at the limit of structural decomposition. Finally, we show that electroforming in a nanoscale junction can be carried out with a dissipated power of <20 nW, a much smaller value compared to earlier studies and one that minimizes irreversible structural modifications of the films. The multimodal approach described here provides a new framework toward the theory/experiment guided design and optimization of electroresistive materials.

1.
Y.
Zhang
,
Z.
Wang
,
J.
Zhu
,
Y.
Yang
,
M.
Rao
,
W.
Song
,
Y.
Zhuo
,
X.
Zhang
,
M.
Cui
,
L.
Shen
,
R.
Huang
, and
J. J.
Yang
, “
Brain-inspired computing with memristors: Challenges in devices, circuits, and systems
,”
Appl. Phys. Rev.
7
(
1
),
011308
(
2020
).
2.
A.
Mehonic
and
A. J.
Kenyon
, “
Brain-inspired computing needs a master plan
,”
Nature
604
(
7905
),
255
260
(
2022
).
3.
A.
Sebastian
,
M. L.
Gallo
,
G. W.
Burr
,
S.
Kim
,
M.
BrightSky
, and
E.
Eleftheriou
, “
Tutorial: Brain-inspired computing using phase-change memory devices
,”
J. Appl. Phys.
124
(
11
),
111101
(
2018
).
4.
L.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
5.
A.
Akther
,
Y.
Ushakov
,
A. G.
Balanov
, and
S. E.
Savel'ev
, “
Deterministic modeling of the diffusive memristor
,”
Chaos
31
(
7
),
073111
(
2021
).
6.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
, “
Memristive devices for computing
,”
Nat. Nanotechnol.
8
(
1
),
13
24
(
2013
).
7.
Z.
Wang
,
S.
Joshi
,
S. E.
Savel'ev
,
H.
Jiang
,
R.
Midya
,
P.
Lin
,
M.
Hu
,
N.
Ge
,
J. P.
Strachan
,
Z.
Li
,
Q.
Wu
,
M.
Barnell
,
G.-L.
Li
,
H. L.
Xin
,
R. S.
Williams
,
Q.
Xia
, and
J. J.
Yang
, “
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
,”
Nat. Mater.
16
(
1
),
101
108
(
2017
).
8.
Y.
Zhuo
,
R.
Midya
,
W.
Song
,
Z.
Wang
,
S.
Asapu
,
M.
Rao
,
P.
Lin
,
H.
Jiang
,
Q.
Xia
,
R. S.
Williams
, and
J. J.
Yang
, “
A dynamical compact model of diffusive and drift memristors for neuromorphic computing
,”
Adv. Electron. Mater.
8
,
2100696
(
2021
).
9.
M. J.
Marinella
and
S.
Agarwal
, “
Efficient reservoir computing with memristors
,”
Nat. Electron.
2
(
10
),
437
438
(
2019
).
10.
A. S.
Sokolov
,
M.
Ali
,
R.
Riaz
,
Y.
Abbas
,
M. J.
Ko
, and
C.
Choi
, “
Silver‐adapted diffusive memristor based on organic nitrogen‐doped graphene oxide quantum dots (N‐GOQDs) for Artificial biosynapse applications
,”
Adv. Funct. Mater.
29
(
18
),
1807504
(
2019
).
11.
J. L.
Pacheco
,
D. L.
Perry
,
D. R.
Hughart
,
M.
Marinella
, and
E.
Bielejec
, “
Electroforming-free TaOx memristors using focused ion beam irradiations
,”
Appl. Phys. A
124
(
9
),
626
(
2018
).
12.
R.
Münstermann
,
J. J.
Yang
,
J. P.
Strachan
,
G.
Medeiros-Ribeiro
,
R.
Dittmann
, and
R.
Waser
, “
Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching: Morphological and electrical changes in TiO2 memristive devices
,”
Phys. Rapid Res. Lett.
4
(
1–2
),
16
18
(
2010
).
13.
S.
Kumar
,
Z.
Wang
,
X.
Huang
,
N.
Kumari
,
N.
Davila
,
J. P.
Strachan
,
D.
Vine
,
A. L. D.
Kilcoyne
,
Y.
Nishi
, and
R. S.
Williams
, “
Oxygen migration during resistance switching and failure of hafnium oxide memristors
,”
Appl. Phys. Lett.
110
(
10
),
103503
(
2017
).
14.
J.
Li
,
C.
Aron
,
G.
Kotliar
, and
J. E.
Han
, “
Microscopic theory of resistive switching in ordered insulators: Electronic versus thermal mechanisms
,”
Nano Lett.
17
(
5
),
2994
2998
(
2017
).
15.
J. B.
Roldán
,
E.
Miranda
,
D.
Maldonado
,
A. N.
Mikhaylov
,
N. V.
Agudov
,
A. A.
Dubkov
,
M. N.
Koryazhkina
,
M. B.
González
,
M. A.
Villena
,
S.
Poblador
,
M.
Saludes-Tapia
,
R.
Picos
,
F.
Jiménez-Molinos
,
S. G.
Stavrinides
,
E.
Salvador
,
F. J.
Alonso
,
F.
Campabadal
,
B.
Spagnolo
,
M.
Lanza
, and
L. O.
Chua
, “
Variability in resistive memories
,”
Adv. Intell. Syst.
5
(
6
),
2200338
(
2023
).
16.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
(
25–26
),
2632
2663
(
2009
).
17.
L. M.
Martyushev
and
V. D.
Seleznev
, “
Maximum entropy production principle in physics, chemistry and biology
,”
Phys. Rep.
426
(
1
),
1
45
(
2006
).
18.
L.
Gao
,
Q.
Ren
,
J.
Sun
,
S.-T.
Han
, and
Y.
Zhou
, “
Memristor modeling: Challenges in theories, simulations, and device variability
,”
J. Mater. Chem. C
9
(
47
),
16859
16884
(
2021
).
19.
J.
Jadwiszczak
,
P.
Maguire
,
C. P.
Cullen
,
G. S.
Duesberg
, and
H.
Zhang
, “
Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors
,”
Beilstein J. Nanotechnol.
11
,
1329
1335
(
2020
).
20.
J.
Kim
,
S.
Saremi
,
M.
Acharya
,
G.
Velarde
,
E.
Parsonnet
,
P.
Donahue
,
A.
Qualls
,
D.
Garcia
, and
L. W.
Martin
, “
Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films
,”
Science
369
(
6499
),
81
84
(
2020
).
21.
M. G.
Stanford
,
B. B.
Lewis
,
K.
Mahady
,
J. D.
Fowlkes
, and
P. D.
Rack
, “
Review article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams
,”
J. Vac. Sci. Technol., B
35
(
3
),
030802
(
2017
).
22.
E. Y.
Cho
,
H.
Li
, and
S. A.
Cybart
, “Direct-write ion beam irradiated Josephson junctions,” in
2019 IEEE International Superconductive Electronics Conference
(
IEEE
,
2019
), pp.
1
4
; https://arxiv.org/pdf/1906.10328.pdf.
23.
M. G.
Stanford
,
P. R.
Pudasaini
,
A.
Belianinov
,
N.
Cross
,
J. H.
Noh
,
M. R.
Koehler
,
D. G.
Mandrus
,
G.
Duscher
,
A. J.
Rondinone
,
IN.
Ivanov
,
T. Z.
Ward
, and
P. D.
Rack
, “
Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions
,”
Sci. Rep.
6
(
1
),
27276
(
2016
).
24.
J. H.
Hur
,
M.-J.
Lee
,
C. B.
Lee
,
Y.-B.
Kim
, and
C.-J.
Kim
, “
Modeling for bipolar resistive memory switching in transition-metal oxides
,”
Phys. Rev. B
82
(
15
),
155321
(
2010
).
25.
J. J.
Yang
,
M.-X.
Zhang
,
J. P.
Strachan
,
F.
Miao
,
M. D.
Pickett
,
R. D.
Kelley
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
, “
High switching endurance in TaOx memristive devices
,”
Appl. Phys. Lett.
97
(
23
),
232102
(
2010
).
26.
M. J.
Marinella
,
P. R.
Mickel
,
A. J.
Lohn
,
D. R.
Hughart
,
R.
Bondi
,
D.
Mamaluy
,
H. P.
Hjalmarson
,
J. E.
Stevens
,
S.
Decker
,
R. T.
Apodaca
,
B.
Evans
,
J. B.
Aimone
,
F.
Rothganger
,
C. D.
James
, and
E. P.
DeBenedictis
, “
(Invited) Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator
,”
ECS Trans.
64
(
14
),
37
42
(
2014
).
27.
M.-J.
Lee
,
C. B.
Lee
,
D.
Lee
,
S. R.
Lee
,
M.
Chang
,
J. H.
Hur
,
Y.-B.
Kim
,
C.-J.
Kim
,
D. H.
Seo
,
S.
Seo
,
U.-I.
Chung
,
I.-K.
Yoo
, and
K.
Kim
, “
A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures
,”
Nat. Mater.
10
(
8
),
625
630
(
2011
).
28.
Z.
Shang
,
J.
Ding
,
C.
Fan
,
D.
Chen
,
J.
Li
,
Y.
Zhang
,
Y.
Wang
,
H.
Wang
, and
X.
Zhang
, “
He ion irradiation response of a gradient T91 steel
,”
Acta Mater.
196
,
175
190
(
2020
).
29.
L.
Pang
,
P.
Tai
,
H.
Chang
,
M.
Cui
,
T.
Shen
,
Z.
Wang
,
K. f
Wei
,
Z.
Ma
,
S.
Huang
,
C.
Liu
,
X.
Gao
, and
Y.
Sheng
, “
Defects evolution induced by Fe and He ions irradiation in Ti3AlC2
,”
J. Nucl. Mater.
558
,
153357
(
2022
).
30.
C.
Fu
,
J.
Li
,
J.
Bai
,
Y.
Li
,
Q.
Chen
,
G.
Lei
,
J.
Lin
,
Z.
Zhu
, and
Y.
Meng
, “
Effect of helium bubbles on irradiation hardening of additive manufacturing 316L stainless steel under high temperature He ions irradiation
,”
J. Nucl. Mater.
550
,
152948
(
2021
).
31.
H.
Iwakiri
,
K.
Yasunaga
,
K.
Morishita
, and
N.
Yoshida
, “
Microstructure evolution in tungsten during low-energy helium ion irradiation
,”
J. Nucl. Mater.
283–287
,
1134
1138
(
2000
).
32.
A.-M.
Seydoux-Guillaume
,
M.-L.
David
,
K.
Alix
,
L.
Datas
, and
B.
Bingen
, “
Trapping of helium in nano-bubbles in euxenite: Positive identification and implications
,”
Earth Planet. Sci. Lett.
448
,
133
139
(
2016
).
33.
M. S.
Maqbool
,
D.
Hoxley
,
B.
Johnson
,
A.
Stacey
, and
B.
Abbey
, “
Investigation of the effect of helium ion (He +) irradiation on the fluorescence properties of microdiamonds grown by chemical vapour deposition
,”
Microsc. Microanal.
27
(
S1
),
2922
2924
(
2021
).
34.
A.
Belianinov
,
V.
Iberi
,
A.
Tselev
,
M. A.
Susner
,
M. A.
McGuire
,
D.
Joy
,
S.
Jesse
,
A. J.
Rondinone
,
S. V.
Kalinin
, and
O. S.
Ovchinnikova
, “
Polarization control via He-ion beam induced nanofabrication in layered ferroelectric semiconductors
,”
ACS Appl. Mater. Interfaces
8
(
11
),
7349
7355
(
2016
).
35.
F. I.
Allen
,
P.
Hosemann
, and
M.
Balooch
, “
Key mechanistic features of swelling and blistering of helium-ion-irradiated tungsten
,”
Scr. Mater.
178
,
256
260
(
2020
).
36.
Z.
Chu
,
L.
Zheng
, and
K.
Lai
, “
Microwave microscopy and its applications
,”
Annu. Rev. Mater. Res.
50
,
105
130
(
2020
).
37.
A.
Tselev
,
P.
Yu
,
Y.
Cao
,
L. R.
Dedon
,
L. W.
Martin
,
S. V.
Kalinin
, and
P.
Maksymovych
, “
Microwave a.c. conductivity of domain walls in ferroelectric thin films
,”
Nat. Commun.
7
(
1
),
11630
(
2016
).
38.
M. E.
Barber
,
E. Y.
Ma
, and
Z.-X.
Shen
, “
Microwave impedance microscopy and its application to quantum materials
,”
Nat. Rev. Phys.
4
(
1
),
61
74
(
2021
).
39.
T.
Thajudheen
,
A. G.
Dixon
,
S.
Gardonio
,
I.
Arčon
, and
M.
Valant
, “
Oxygen vacancy-related cathodoluminescence quenching and polarons in CeO2
,”
J. Phys. Chem. C
124
(
37
),
19929
19936
(
2020
).
40.
M. V.
Zamoryanskaya
and
V. I.
Sokolov
, “
Cathodoluminescence study of silicon oxide-silicon interface
,”
Semiconductors
41
(
4
),
462
468
(
2007
).
41.
T. A.
Nazarova
and
M. V.
Nazarov
, “
Analysis of cathodoluminescence from indented MgO crystals subjected to thermal environments
,”
Philos. Mag. A
74
(
5
),
1311
1318
(
1996
).
42.
M.
Yu
,
Y.
Cai
,
Z.
Wang
,
Y.
Fang
,
Y.
Liu
,
Z.
Yu
,
Y.
Pan
,
Z.
Zhang
,
J.
Tan
,
X.
Yang
,
M.
Li
, and
R.
Huang
, “
Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation
,”
Sci. Rep.
6
(
1
),
21020
(
2016
).
43.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
44.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
(
11
),
5029
5036
(
1999
).
45.
R. J.
Bondi
,
M. P.
Desjarlais
,
A. P.
Thompson
,
G. L.
Brennecka
, and
M. J.
Marinella
, “
Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations
,”
J. Appl. Phys.
114
(
20
),
203701
(
2013
).
46.
R. J.
Bondi
,
B. P.
Fox
, and
M. J.
Marinella
, “
Role of atomistic structure in the stochastic nature of conductivity in substoichiometric tantalum pentoxide
,”
J. Appl. Phys.
119
(
12
),
124101
(
2016
).
47.
J.
Heyd
and
G. E.
Scuseria
, “
Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional
,”
J. Chem. Phys.
121
(
3
),
1187
1192
(
2004
).
48.
Y.-M.
Kim
,
J.
Lee
,
D.-J.
Jeon
,
S.-E.
Oh
, and
J.-S.
Yeo
, “
Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications
,”
Appl. Microsc.
51
(
1
),
7
(
2021
).
49.
A.
Zaffora
,
D.-Y.
Cho
,
K.-S.
Lee
,
F.
Di Quarto
,
R.
Waser
,
M.
Santamaria
, and
I.
Valov
, “
Electrochemical tantalum oxide for resistive switching memories
,”
Adv. Mater.
29
(
43
),
1703357
(
2017
).
50.
S.
Kim
,
S.
Choi
,
J.
Lee
, and
W. D.
Lu
, “
Tuning resistive switching characteristics of tantalum oxide memristors through Si doping
,”
ACS Nano
8
(
10
),
10262
10269
(
2014
).
51.
U.
Böttger
,
M.
von Witzleben
,
V.
Havel
,
K.
Fleck
,
V.
Rana
,
R.
Waser
, and
S.
Menzel
, “
Picosecond multilevel resistive switching in tantalum oxide thin films
,”
Sci. Rep.
10
(
1
),
16391
(
2020
).
You do not currently have access to this content.