Superconducting electronics are among the most promising alternatives to conventional CMOS technology, thanks to the ultra-fast speed and ultra-high energy efficiency of the superconducting devices. Having a cryogenic control processor is also a crucial requirement for scaling the existing quantum computers up to thousands of qubits. Despite showing outstanding speed and energy efficiency, Josephson junction-based circuits suffer from several challenges such as flux trapping leading to limited scalability, difficulty in driving high impedances, and so on. Three-terminal cryotron devices have been proposed to solve these issues, which can drive high impedances ( > 100 k Ω) and are free from any flux trapping issue. In this work, we develop a reconfigurable logic circuit using a heater cryotron (hTron). In conventional approaches, the number of devices to perform a logic operation typically increases with the number of inputs. However, here, we demonstrate a single hTron device-based logic circuit that can be reconfigured to perform 1-input copy and NOT, 2-input AND and OR, and 3-input majority logic operations by choosing suitable biasing conditions. Consequently, we can perform any processing task with a much smaller number of devices. Also, since we can perform different logic operations with the same circuit (same layout), we can develop a camouflaged system where all the logic gates will have the same layout. Therefore, this proposed circuit will ensure enhanced hardware security against reverse engineering attacks.

1.
S.
Alam
,
M. S.
Hossain
,
S. R.
Srinivasa
, and
A.
Aziz
,
Nat. Electron.
6
,
185
(
2023
).
2.
S. S.
Tannu
,
D. M.
Carmean
, and
M. K.
Qureshi
, in
ACM International Conference Proceeding Series
,
2017
.
3.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
,
Sci. Rep.
11
,
789
(
2021
).
4.
J. M.
Hornibrook
,
J. I.
Colless
,
I. D. C.
Lamb
,
S. J.
Pauka
,
H.
Lu
,
A. C.
Gossard
,
J. D.
Watson
,
G. C.
Gardner
,
S.
Fallahi
,
M. J.
Manfra
, and
D. J.
Reilly
,
Phys. Rev. Appl.
3
,
024010
(
2015
).
5.
S.
Alam
,
M. M.
Islam
,
M. S.
Hossain
,
A.
Jaiswal
, and
A.
Aziz
,
Appl. Phys. Lett.
120
,
144102
(
2022
).
6.
D. S.
Holmes
,
A. L.
Ripple
, and
M. A.
Manheimer
,
IEEE Trans. Appl. Supercond.
23
,
1701610
(
2013
).
7.
J.
Huang
,
R.
Fu
,
X.
Ye
, and
D.
Fan
,
CCF Trans. High Perform. Comput.
4
,
1–22
(
2022
).
8.
W.
Chen
,
A. V.
Rylyakov
,
V.
Patel
,
J. E.
Lukens
, and
K. K.
Likharev
,
IEEE Trans. Appl. Supercond.
9
,
3212
(
1999
).
9.
S.
Alam
,
M. A.
Jahangir
, and
A.
Aziz
,
IEEE Electron Device Lett.
41
,
1249
(
2020
).
10.
A. N.
McCaughan
and
K. K.
Berggren
,
Nano Lett.
14
,
5748
(
2014
).
11.
S.
Alam
,
M. S.
Hossain
,
K.
Ni
,
V.
Narayanan
, and
A.
Aziz
, “Voltage-controlled cryogenic Boolean Logic Family based on ferroelectric SQUID” arXiv:2212.08202 (
2022
).
12.
A. N.
McCaughan
,
V. B.
Verma
,
S. M.
Buckley
,
J. P.
Allmaras
,
A. G.
Kozorezov
,
A. N.
Tait
,
S. W.
Nam
, and
J. M.
Shainline
,
Nat. Electron.
2
,
451
(
2019
).
13.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
,
Appl. Phys. Lett.
119
,
082602
(
2021
).
14.
G. H.
Lee
,
D.
Min
,
I.
Byun
, and
J.
Kim
,
Proc. - Int. Symp. Comput. Archit.
774
,
774
787
(
2019
).
15.
S.
Alam
,
M. M.
Islam
,
M. S.
Hossain
,
K.
Ni
,
V.
Narayanan
, and
A.
Aziz
, in
Device Research Conference
,
2022
.
16.
S.
Alam
,
M. M.
Islam
,
M. S.
Hossain
, and
A.
Aziz
, in
Device Research Conference
,
2022
.
17.
S.
Alam
,
A. N.
McCaughan
, and
A.
Aziz
, in
Device Research Conference
,
2023
.
18.
M. M.
Islam
,
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
,
Proc. IEEE Conf. Nanotechnol.
2022,
307
310
(
2022
).
19.
J. M.
Shainline
,
S. M.
Buckley
,
A. N.
Mccaughan
,
J. T.
Chiles
,
A.
Jafari Salim
,
M.
Castellanos-Beltran
,
C. A.
Donnelly
,
M. L.
Schneider
,
R. P.
Mirin
, and
S. W.
Nam
,
J. Appl. Phys.
126
,
044902
(
2019
).
20.
M. M.
Islam
,
S.
Alam
,
M. S.
Hossain
,
K.
Roy
, and
A.
Aziz
,
J. Appl. Phys.
133
,
70701
(
2023
).
21.
M. M.
Islam
,
S.
Alam
,
M. R. I.
Udoy
,
M. S.
Hossain
, and
A.
Aziz
, “A cryogenic artificial synapse based on superconducting memristor,” in
Proceedings of Great Lakes Symposium on VLSI
(
ACM
,
2023
), pp.
143
148
.
22.
T.
Jabbari
,
G.
Krylov
, and
E. G.
Friedman
,
IEEE Trans. Appl. Supercond.
31
,
1301605
(
2021
).
23.
H.
Kumar
,
T.
Jabbari
,
G.
Krylov
,
K.
Basu
,
E. G.
Friedman
, and
R.
Karri
,
IEEE Trans. Appl. Supercond.
30
,
1700213
(
2020
).
24.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
,
Phys. Rev.
108
,
1175
1204
(
1957
).
25.
J.
Reuben
,
J. Low Power Electron. Appl.
10
,
28
(
2020
).
26.
S.
Alam
,
M. M.
Islam
,
M. S.
Hossain
,
A.
Jaiswal
, and
A.
Aziz
,
IEEE Access
11
,
60717
(
2023
).
27.
N.
Takeuchi
,
Y.
Yamanashi
, and
N.
Yoshikawa
,
Sci. Rep.
4
(
1
),
6354
(
2014
).
28.
A. J.
Kerman
,
J. K. W.
Yang
,
R. J.
Molnar
,
E. A.
Dauler
, and
K. K.
Berggren
,
Phys. Rev. B
79
,
100509
(
2009
).
29.
F.
Wen
,
J.
Shabani
, and
E.
Tutuc
,
IEEE Trans. Electron Devices
66
,
5367
(
2019
).
30.
M.
Rocci
,
G.
De Simoni
,
F.
Giazotto
,
C.
Puglia
,
D. D.
Esposti
,
E.
Strambini
,
V.
Zannier
, and
L.
Sorba
,
ACS Nano
14
,
12621
(
2020
).
31.
G.
De Simoni
,
F.
Paolucci
,
P.
Solinas
,
E.
Strambini
, and
F.
Giazotto
,
Nat. Nanotechnol.
13
,
802
(
2018
).

Supplementary Material

You do not currently have access to this content.