Ferroelectricity has a wide range of applications in functional electronics, and it is extremely important for the development of the next generation of information-storage technologies. However, it is difficult to achieve in practice due to its special symmetry requirements. In this Letter, based on van der Waals stacking, a generic model is proposed for realizing ferroelectric devices in which a freely movable center layer is packaged in two fixed and symmetrically stacked layers. In this model, a ferroelectric phase transition can be realized between two equivalent and eccentric ground stacking states with opposite polarizations. By means of first-principles calculations, taking stacked hexagonal boron nitride (h-BN/h-BN/h-BN) and h-BN/graphene/h-BN as feasible models, we carefully evaluated the magnitude of ferroelectricity. The corresponding polarizations were estimated as 1.83 and 1.35 pC/m, values that are comparable to those observed in sliding ferroelectricity. Devices using this tri-layer model of vertical ferroelectricity can be constructed using arbitrary van der Waals semiconducting materials, and these will usually have low switching barriers. It is highly likely that optimized material combinations with remarkable polarization will be discovered from the huge candidate set this provides for future information-storage applications.

1.
J. F.
Scott
, “
Applications of modern ferroelectrics
,”
Science
315
,
954
959
(
2007
).
2.
J. F.
Scott
, “
Multiferroic memories
,”
Nat. Mater.
6
,
256
257
(
2007
).
3.
B.
Behera
,
B. C.
Sutar
, and
N. R.
Pradhan
, “
Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity
,”
Emergent Mater.
4
,
847
863
(
2021
).
4.
Y.
Zhang
,
T.
Ouyang
,
C.
He
,
J.
Li
, and
C.
Tang
, “
Extremely promising monolayer materials with robust ferroelectricity and extraordinary piezoelectricity: δ-AsN, δ-SbN, and δ-BiN
,”
Nanoscale
15
,
6363
6370
(
2023
).
5.
J.
Liao
,
S.
Dai
,
R.-C.
Peng
,
J.
Yang
,
B.
Zeng
,
M.
Liao
, and
Y.
Zhou
, “
HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: A review
,”
Fundam. Res.
3
,
332
345
(
2023
).
6.
N.
Nuraje
and
K.
Su
, “
Perovskite ferroelectric nanomaterials
,”
Nanoscale
5
,
8752
8780
(
2013
).
7.
R. E.
Cohen
, “
Origin of ferroelectricity in perovskite oxides
,”
Nature
358
,
136
138
(
1992
).
8.
L. W.
Martin
and
A. M.
Rappe
, “
Thin-film ferroelectric materials and their applications
,”
Nat. Rev. Mater.
2
,
16087
(
2016
).
9.
Z.
Guan
,
H.
Hu
,
X. W.
Shen
,
P. H.
Xiang
,
N.
Zhong
,
J. H.
Chu
, and
C. G.
Duan
, “
Recent progress in two-dimensional ferroelectric materials
,”
Adv. Electron. Mater.
6
,
1900818
(
2020
).
10.
F.
Liu
,
L.
You
,
K. L.
Seyler
,
X.
Li
,
P.
Yu
,
J.
Lin
,
X.
Wang
,
J.
Zhou
,
H.
Wang
,
H.
He
,
S. T.
Pantelides
,
W.
Zhou
,
P.
Sharma
,
X.
Xu
,
P. M.
Ajayan
,
J.
Wang
, and
Z.
Liu
, “
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
,”
Nat. Commun.
7
,
12357
(
2016
).
11.
K.
Chang
,
J.
Liu
,
H.
Lin
,
N.
Wang
,
K.
Zhao
,
A.
Zhang
,
F.
Jin
,
Y.
Zhong
,
X.
Hu
,
W.
Duan
,
Q.
Zhang
,
L.
Fu
,
Q. K.
Xue
,
X.
Chen
, and
S. H.
Ji
, “
Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
,”
Science
353
,
274
278
(
2016
).
12.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
,
14956
(
2017
).
13.
L.
Li
and
M.
Wu
, “
Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators
,”
ACS Nano
11
,
6382
6388
(
2017
).
14.
K.
Yasuda
,
X.
Wang
,
K.
Watanabe
,
T.
Taniguchi
, and
P.
Jarillo-Herrero
, “
Stacking-engineered ferroelectricity in bilayer boron nitride
,”
Science
372
,
1458
1462
(
2021
).
15.
X.
Wang
,
K.
Yasuda
,
Y.
Zhang
,
S.
Liu
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
L.
Fu
, and
P.
Jarillo-Herrero
, “
Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides
,”
Nat. Nanotechnol.
17
,
367
371
(
2022
).
16.
L.
Rogée
,
L.
Wang
,
Y.
Zhang
,
S.
Cai
,
P.
Wang
,
M.
Chhowalla
,
W.
Ji
, and
S. P.
Lau
, “
Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides
,”
Science
376
,
973
978
(
2022
).
17.
F.
Sui
,
M.
Jin
,
Y.
Zhang
,
R.
Qi
,
Y.-N.
Wu
,
R.
Huang
,
F.
Yue
, and
J.
Chu
, “
Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor
,”
Nat. Commun.
14
,
36
(
2023
).
18.
M.
Vizner Stern
,
Y.
Waschitz
,
W.
Cao
,
I.
Nevo
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Sela
,
M.
Urbakh
,
O.
Hod
, and
M.
Ben Shalom
, “
Interfacial ferroelectricity by van der Waals sliding
,”
Science
372
,
1462
1466
(
2021
).
19.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
20.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
21.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
22.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
23.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
24.
V.
Wang
,
N.
Xu
,
J.-C.
Liu
,
G.
Tang
, and
W.-T.
Geng
, “
VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code
,”
Comput. Phys. Commun.
267
,
108033
(
2021
).
25.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
26.
D.
Vanderbilt
, “
Berry-phase theory of proper piezoelectric response
,”
J. Phys. Chem. Solids
61
,
147
151
(
2000
).
27.
R. D.
King-Smith
and
D.
Vanderbilt
, “
Theory of polarization of crystalline solids
,”
Phys. Rev. B
47
,
1651
1654
(
1993
).
28.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
29.
M.
Dayah
, “
Periodic Table—Ptable
,” https://ptable.com (
1997
).
30.
J. M.
Park
,
Y.
Cao
,
K.
Watanabe
,
T.
Taniguchi
, and
P.
Jarillo-Herrero
, “
Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene
,”
Nature
590
,
249
255
(
2021
).
31.
X.
Sun
,
S.
Zhang
,
Z.
Liu
,
H.
Zhu
,
J.
Huang
,
K.
Yuan
,
Z.
Wang
,
K.
Watanabe
,
T.
Taniguchi
,
X.
Li
,
M.
Zhu
,
J.
Mao
,
T.
Yang
,
J.
Kang
,
J.
Liu
,
Y.
Ye
,
Z. V.
Han
, and
Z.
Zhang
, “
Correlated states in doubly-aligned hBN/graphene/hBN heterostructures
,”
Nat. Commun.
12
,
7196
(
2021
).
You do not currently have access to this content.