A large-area single-photon detector with a high maximum count rate (MCR) is expected by LiDAR application for a large dynamic range and high coupling efficiency. Superconducting nanowire single-photon detectors (SNSPDs) are very competitive for high quantum efficiency at near infrared wavelengths. However, it is a great challenge to balance the efficiency, area, and MCR of SNSPDs due to the long superconducting nanowire architecture. In this article, we design a large-area SNSPD with a high MCR for LiDAR applications. The SNSPD has four independent channels, and each of them is composed of four parallel nanowires. The photosensitive area has a diameter of 60 μm and can be coupled with a 200-μm multimode fiber through a lens. At the same time, we analyze the origin of the detector latching under high count rates and propose a discharge acceleration circuit to alleviate it. In the experiment, an MCR of 147 Mcps is achieved in this SNSPD. The product of area and MCR for each channel of this SNSPD is twice higher than previously reported results. We highlight that this work is of great significance for the application of SNSPD in LiDAR.

1.
Q.
Chen
,
R.
Ge
,
L.
Zhang
,
F.
Li
,
B.
Zhang
,
F.
Jin
,
H.
Han
,
Y.
Dai
,
G.
He
,
Y.
Fei
,
X.
Wang
,
H.
Wang
,
X.
Jia
,
Q.
Zhao
,
X.
Tu
,
L.
Kang
,
J.
Chen
, and
P.
Wu
, “
Mid-infrared single photon detector with superconductor Mo(0.8)Si(0.2) nanowire
,”
Sci. Bull.
66
(
10
),
965
(
2021
).
2.
M.
Colangelo
,
A. B.
Walter
,
B. A.
Korzh
,
E.
Schmidt
,
B.
Bumble
,
A. E.
Lita
,
A. D.
Beyer
,
J. P.
Allmaras
,
R. M.
Briggs
,
A. G.
Kozorezov
,
E. E.
Wollman
,
M. D.
Shaw
, and
K. K.
Berggren
, “
Large-area superconducting nanowire single-photon detectors for operation at wavelengths up to 7.4 μm
,”
Nano Lett.
22
(
14
),
5667
(
2022
).
3.
S.
Guo
,
J.
Tan
,
H.
Zhang
,
J.
Wang
,
T.
Ji
,
L.
Zhang
,
X.
Hu
,
J.
Chen
,
J.
Xie
,
K.
Zou
,
Y.
Meng
,
X.
Bei
,
L.-A.
Wu
,
Q.
Chen
,
H.
Wang
,
X.
Tu
,
X.
Jia
,
Q.-Y.
Zhao
,
L.
Kang
, and
P.
Wu
, “
High-timing-precision detection of single x-ray photons by superconducting nanowires
,”
Natl. Sci. Rev.
(published online, 2023).
4.
J.
Chang
,
J. W. N.
Los
,
J. O.
Tenorio-Pearl
,
N.
Noordzij
,
R.
Gourgues
,
A.
Guardiani
,
J. R.
Zichi
,
S. F.
Pereira
,
H. P.
Urbach
,
V.
Zwiller
,
S. N.
Dorenbos
, and
I.
Esmaeil Zadeh
, “
Detecting telecom single photons with 99.5 − 2.07 + 0.5% system detection efficiency and high time resolution
,”
APL Photonics
6
(
3
),
036114
(
2021
).
5.
D.
Reddy
,
R.
Nerem
,
S.
Nam
,
R.
Mirin
, and
V.
Verma
, “
Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm
,”
Optica
7
,
1649
(
2020
).
6.
J.
Chiles
,
I.
Charaev
,
R.
Lasenby
,
M.
Baryakhtar
,
J.
Huang
,
A.
Roshko
,
G.
Burton
,
M.
Colangelo
,
K.
Van Tilburg
,
A.
Arvanitaki
,
S.
Woo Nam
, and
K. K.
Berggren
, “
New constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope
,”
Phys. Rev. Lett.
128
(
23
),
231802
(
2022
).
7.
B.
Korzh
,
Q.-Y.
Zhao
,
J. P.
Allmaras
,
S.
Frasca
,
T. M.
Autry
,
E. A.
Bersin
,
A. D.
Beyer
,
R. M.
Briggs
,
B.
Bumble
,
M.
Colangelo
,
G. M.
Crouch
,
A. E.
Dane
,
T.
Gerrits
,
A. E.
Lita
,
F.
Marsili
,
G.
Moody
,
C.
Peña
,
E.
Ramirez
,
J. D.
Rezac
,
N.
Sinclair
,
M. J.
Stevens
,
A. E.
Velasco
,
V. B.
Verma
,
E. E.
Wollman
,
S.
Xie
,
D.
Zhu
,
P. D.
Hale
,
M.
Spiropulu
,
K. L.
Silverman
,
R. P.
Mirin
,
S. W.
Nam
,
A. G.
Kozorezov
,
M. D.
Shaw
, and
K. K.
Berggren
, “
Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector
,”
Nat. Photonics
14
(
4
),
250
(
2020
).
8.
I.
Craiciu
,
B.
Korzh
,
A. D.
Beyer
,
A.
Mueller
,
J. P.
Allmaras
,
L.
Narváez
,
M.
Spiropulu
,
B.
Bumble
,
T.
Lehner
,
E. E.
Wollman
, and
M. D.
Shaw
, “
High-speed detection of 1550 nm single photons with superconducting nanowire detectors
,”
Optica
10
(
2
),
183
(
2023
).
9.
W.
Zhang
,
J.
Huang
,
C.
Zhang
,
L.
You
,
C.
Lv
,
L.
Zhang
,
H.
Li
,
Z.
Wang
, and
X.
Xie
, “
A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz
,”
IEEE Trans. Appl. Supercond.
29
(
5
),
2200204
(
2019
).
10.
L. J.
Deutsch
, “
Towards deep space optical communications
,”
Nat. Astron.
4
(
9
),
907
(
2020
).
11.
D.
Salvoni
,
L.
Parlato
,
M.
Ejrnaes
,
F.
Mattioli
,
A.
Gaggero
,
F.
Martini
,
A.
Boselli
,
A.
Sannino
,
S.
Amoruso
,
R.
Cristiano
, and
G. P.
Pepe
, “
Large Area SNSPD for Lidar measurements in the infrared
,”
IEEE Trans. Appl. Supercond.
32
(
4
),
2200304
(
2022
).
12.
H.
Kaushal
and
G.
Kaddoum
, “
Optical Communication in Space: Challenges and Mitigation Techniques
,”
IEEE Commun. Surv. Tutorials
19
(
1
),
57
(
2017
).
13.
Z.-P.
Li
,
J.-T.
Ye
,
X.
Huang
,
P.-Y.
Jiang
,
Y.
Cao
,
Y.
Hong
,
C.
Yu
,
J.
Zhang
,
Q.
Zhang
,
C.-Z.
Peng
,
F.
Xu
, and
J.-W.
Pan
, “
Single-photon imaging over 200 km
,”
Optica
8
(
3
),
344
(
2021
).
14.
S.
Yu
,
Z.
Zhang
,
H.
Xia
,
X.
Dou
,
T.
Wu
,
Y.
Hu
,
M.
Li
,
M.
Shangguan
,
T.
Wei
,
L.
Zhao
,
L.
Wang
,
P.
Jiang
,
C.
Zhang
,
L.
You
,
L.
Tao
, and
J.
Qiu
, “
Photon-counting distributed free-space spectroscopy
,”
Light. Sci. Appl.
10
(
1
),
212
(
2021
).
15.
C.
Lv
,
W.
Zhang
,
L.
You
,
P.
Hu
,
H.
Wang
,
H.
Li
,
C.
Zhang
,
J.
Huang
,
Y.
Wang
,
X.
Yang
,
Z.
Wang
, and
X.
Xie
, “
Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator
,”
AIP Adv.
8
(
10
),
105018
(
2018
).
16.
Q.
Zhao
,
T.
Jia
,
M.
Gu
,
C.
Wan
,
L.
Zhang
,
W.
Xu
,
L.
Kang
,
J.
Chen
, and
P.
Wu
, “
Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits
,”
Opt. Lett.
39
(
7
),
1869
(
2014
).
17.
J.
Rapp
,
Y.
Ma
,
R. M. A.
Dawson
, and
V. K.
Goyal
, “
High-flux single-photon lidar
,”
Optica
8
(
1
),
30
(
2021
).
18.
A. J.
Kerman
,
E. A.
Dauler
,
W. E.
Keicher
,
J. K. W.
Yang
,
K. K.
Berggren
,
G.
Gol'tsman
, and
B.
Voronov
, “
Kinetic-inductance-limited reset time of superconducting nanowire photon counters
,”
Appl. Phys. Lett.
88
(
11
),
111116
(
2006
).
19.
J. S.
Luskin
,
E.
Schmidt
,
B.
Korzh
,
A. D.
Beyer
,
B.
Bumble
,
J. P.
Allmaras
,
A. B.
Walter
,
E. E.
Wollman
,
L.
Narváez
,
V. B.
Verma
,
S. W.
Nam
,
I.
Charaev
,
M.
Colangelo
,
K. K.
Berggren
,
C.
Peña
,
M.
Spiropulu
,
M.
Garcia-Sciveres
,
S.
Derenzo
, and
M. D.
Shaw
, “
Large active-area superconducting microwire detector array with single-photon sensitivity in the near-infrared
,”
Appl. Phys. Lett.
122
(
24
),
243506
(
2023
).
20.
X.
Tao
,
H.
Hao
,
X.
Li
,
S.
Chen
,
L.
Wang
,
X.
Tu
,
X.
Jia
,
L.
Zhang
,
Q.
Zhao
,
L.
Kang
, and
P.
Wu
, “
Characterize the speed of a photon-number-resolving superconducting nanowire detector
,”
IEEE Photonics J.
12
(
4
),
4501308
(
2020
).
21.
S. Y.
Lee
and
K.
Anbumony
, “
Analysis of three-dimensional proximity effect in electron-beam lithography
,”
Microelectron. Eng.
83
(
2
),
336
(
2006
).
22.
L.
Cohen
,
E. S.
Matekole
,
Y.
Sher
,
D.
Istrati
,
H. S.
Eisenberg
, and
J. P.
Dowling
, “
Thresholded quantum LIDAR: Exploiting photon-number-resolving detection
,”
Phys. Rev. Lett.
123
(
20
),
203601
(
2019
).
23.
B.
Zhang
,
Y.-Q.
Guan
,
L.
Xia
,
D.
Dong
,
Q.
Chen
,
C.
Xu
,
C.
Wu
,
H.
Huang
,
L.
Zhang
,
L.
Kang
,
J.
Chen
, and
P.
Wu
, “
An all-day lidar for detecting soft targets over 100 km based on superconducting nanowire single-photon detectors
,”
Supercond. Sci. Technol.
34
(
3
),
034005
(
2021
).
24.
X.
Li
,
J.
Tan
,
K.
Zheng
,
L.
Zhang
,
L.
Zhang
,
W.
He
,
P.
Huang
,
H.
Li
,
B.
Zhang
,
Q.
Chen
,
R.
Ge
,
S.
Guo
,
T.
Huang
,
X.
Jia
,
Q.
Zhao
,
X.
Tu
,
L.
Kang
,
J.
Chen
, and
P.
Wu
, “
Enhanced photon communication through Bayesian estimation with an SNSPD array
,”
Photonics Res.
8
(
5
),
637
(
2020
).
25.
Y.
Meng
,
K.
Zou
,
N.
Hu
,
X.
Lan
,
L.
Xu
,
J.
Zichi
,
S.
Steinhauer
,
V.
Zwiller
, and
X.
Hu
, “
Fractal superconducting nanowire avalanche photodetector at 1550 nm with 60% system detection efficiency and 1.05 polarization sensitivity
,”
Opt. Lett.
45
(
2
),
471
(
2020
).
26.
X.
Ruiying
,
F.
Zheng
,
D.
Qin
,
X.
Yan
,
G.
Zhu
,
L.
Kang
,
L.
Zhang
,
X.
Jia
,
X.
Tu
,
B.
Jin
,
W.
Xu
,
J.
Chen
, and
P.
Wu
, “
Demonstration of polarization-insensitive superconducting nanowire single-photon detector with Si compensation layer
,”
J. Lightwave Technol.
35
,
4707
(
2017
).
27.
L.
Zhang
,
C.
Wan
,
M.
Gu
,
R.
Xu
,
S.
Zhang
,
L.
Kang
,
J.
Chen
, and
P.
Wu
, “
Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors
,”
Sci. Bull.
60
,
1434
(
2015
).
28.
S.
Ferrari
,
V.
Kovalyuk
,
A.
Vetter
,
C.
Lee
,
C.
Rockstuhl
,
A.
Semenov
,
G.
Gol'tsman
, and
W.
Pernice
, “
Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate
,”
Appl. Phys. Lett.
115
(
10
),
101104
(
2019
).
29.
A. J.
Kerman
,
D.
Rosenberg
,
R. J.
Molnar
, and
E. A.
Dauler
, “
Readout of superconducting nanowire single-photon detectors at high count rates
,”
J. Appl. Phys.
113
(
14
),
144511
(
2013
).
30.
C.
Autebert
,
G.
Gras
,
E.
Amri
,
M.
Perrenoud
,
M.
Caloz
,
H.
Zbinden
, and
F.
Bussières
, “
Direct measurement of the recovery time of superconducting nanowire single-photon detectors
,”
J. Appl. Phys.
128
(
7
),
074504
(
2020
).
31.
M.
Perrenoud
,
M.
Caloz
,
E.
Amri
,
C.
Autebert
,
C.
Schönenberger
,
H.
Zbinden
, and
F.
Bussières
, “
Operation of parallel SNSPDs at high detection rates
,”
Supercond. Sci. Technol.
34
(
2
),
024002
(
2021
).
32.
G. V.
Resta
,
L.
Stasi
,
M.
Perrenoud
,
S.
El-Khoury
,
T.
Brydges
,
R.
Thew
,
H.
Zbinden
, and
F.
Bussières
, “
Gigahertz detection rates and dynamic photon-number resolution with superconducting nanowire arrays
,”
Nano Lett.
23
(
13
),
6018
(
2023
).

Supplementary Material

You do not currently have access to this content.