Semiconductor lasers are the heart for the development of technologies in many fields. In recent decades, a new type of large-area surface-emitting lasers based on the in-plane photonic crystal modulation and feedback have emerged to show superior advantages of high output power, low-divergence, high beam quality and brightness, and compact and monolithic structure. In this paper, we review the design and development of photonic crystal surface-emitting laser and discuss the future investigation and improvements.

1.
M.
Imada
,
S.
Noda
,
A.
Chutinan
,
T.
Tokuda
,
M.
Murata
, and
G.
Sasaki
, “
Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure
,”
Appl. Phys. Lett.
75
(
3
),
316
318
(
1999
).
2.
K.
Hirose
,
Y.
Liang
,
Y.
Kurosaka
,
A.
Watanabe
,
T.
Sugiyama
, and
S.
Noda
, “
Watt-class high-power, high-beam-quality photonic-crystal lasers
,”
Nat. Photonics
8
(
5
),
406
411
(
2014
).
3.
M.
Yoshida
,
M.
De Zoysa
,
K.
Ishizaki
,
Y.
Tanaka
,
M.
Kawasaki
,
R.
Hatsuda
,
B.
Song
,
J.
Gelleta
, and
S.
Noda
, “
Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams
,”
Nat. Mater.
18
(
2
),
121
(
2019
).
4.
M.
Yoshida
,
S.
Katsuno
,
T.
Inoue
,
J.
Gelleta
,
K.
Izumi
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
High-brightness scalable continuous-wave single-mode photonic-crystal laser
,”
Nature
618
(
7966
),
727
732
(
2023
).
5.
R. J. E.
Taylor
,
D. T. D.
Childs
,
P.
Ivanov
,
B.
Stevens
,
N.
Babazadeh
,
J.
Sarma
,
S.
Khamas
,
A. J.
Crombie
,
G. R.
Li
,
G.
Ternent
,
S.
Thoms
,
H. P.
Zhou
, and
R. A.
Hogg
, “
Coherently coupled photonic-crystal surface-emitting laser array
,”
IEEE J. Select. Top. Quantum Electron.
21
(
6
),
493
(
2015
).
6.
B.
King
,
K. J.
Rae
,
A. F.
McKenzie
,
A.
Boldin
,
D.
Kim
,
N. D.
Gerrard
,
G. R.
Li
,
K.
Nishi
,
K.
Takemasa
,
M.
Sugawara
,
R. J. E.
Taylor
,
D. T. D.
Childs
, and
R. A.
Hogg
, “
Coherent power scaling in photonic crystal surface emitting laser arrays
,”
AIP Adv.
11
(
1
),
15017
(
2021
).
7.
A.
Kalapala
,
A.
Song
,
M.
Pan
,
C.
Gautam
,
L.
Overman
,
K.
Reilly
,
T.
Rotter
,
G.
Balakrishnan
,
R.
Gibson
,
R.
Bedford
,
J. J.
Coleman
,
S.
Fan
, and
W.
Zhou
, “
Scaling challenges in high power photonic crystal surface-emitting lasers
,”
IEEE J. Quantum Electron.
58
,
21952180
(
2022
).
8.
A. R. K.
Kalapala
,
K.
Reilly
,
T.
Rotter
,
C.
Gautam
,
M.
Pan
,
Z.
Liu
,
Y.
Chen
,
M.
Zhou
,
R.
Gibson
,
R.
Bedford
,
L.
Overman
,
S.
Fan
,
G.
Balakrishnan
, and
W.
Zhou
, in
IEEE Photonics Conference (IPC)
(
IEEE
,
2022
).
9.
X.
Ge
,
M.
Minkov
,
S.
Fan
,
X.
Li
, and
W.
Zhou
, “
Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide
,”
npj 2D Mater. Appl.
3
(
1
),
16
(
2019
).
10.
D. M.
Williams
,
K. M.
Groom
,
B. J.
Stevens
,
D. T. D.
Childs
,
R. J. E.
Taylor
,
S.
Khamas
,
R. A.
Hogg
,
N.
Ikeda
, and
Y.
Sugimoto
, “
Epitaxially regrown GaAs-based photonic crystal surface-emitting laser
,”
IEEE Photonics Technol. Lett.
24
(
11
),
966
968
(
2012
).
11.
K. J.
Reilly
,
A.
Kalapala
,
S.
Yeom
,
S. J.
Addamane
,
E.
Renteria
,
W.
Zhou
, and
G.
Balakrishnan
, “
Epitaxial regrowth and hole shape engineering for photonic crystal surface emitting lasers (PCSELs)
,”
J. Cryst. Growth
535
,
125531
(
2020
).
12.
A. R. K.
Kalapala
,
S.
Yeom
,
S. J.
Addamane
,
K. J.
Reilly
,
A.
Song
,
R.
Gibson
,
G.
Balakrishnan
,
R.
Bedford
,
S.
Fan
, and
W.
Zhou
, in
IEEE Photonics Conference (IPC)
(
IEEE
,
2019
).
13.
K. J.
Reilly
,
A.
Kalapala
,
A.
Song
,
T.
Rotter
,
Z.
Liu
,
E.
Renteria
,
S.
Fan
,
W.
Zhou
, and
G.
Balakrishnan
, in
Conference on Lasers and Electro-Optics
, edited by
J.
Kang
,
S.
Tomasulo
,
I.
Ilev
,
D.
Müller
,
N.
Litchinitser
,
S.
Polyakov
,
V.
Podolskiy
,
J.
Nunn
,
C.
Dorrer
,
T.
Fortier
,
Q.
Gan
, and
C.
Saraceno
(
Optica Publishing Group
,
San Jose, CA
,
2021
).
14.
H.-L.
Chiu
,
K.-B.
Hong
,
K.-C.
Huang
, and
T.-C.
Lu
, “
Photonic crystal surface emitting lasers with naturally formed periodic ITO structures
,”
ACS Photonics
6
(
3
),
684
690
(
2019
).
15.
Y.
Itoh
,
N.
Kono
,
D.
Inoue
,
N.
Fujiwara
,
M.
Ogasawara
,
K.
Fujii
,
H.
Yoshinaga
,
H.
Yagi
,
M.
Yanagisawa
,
M.
Yoshida
,
T.
Inoue
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
High-power CW oscillation of 1.3-μm wavelength InP-based photonic-crystal surface-emitting lasers
,”
Opt. Express
30
(
16
),
29539
29545
(
2022
).
16.
W.
Zhou
,
S.-C.
Liu
,
X.
Ge
,
D.
Zhao
,
H.
Yang
,
C.
Reuterskiöld-Hedlund
, and
M.
Hammar
, “
On-chip photonic crystal surface-emitting membrane lasers
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
3
),
18586092
(
2019
).
17.
C.
Reuterskiöld Hedlund
,
J.
Martins De Pina
,
A.
Kalapala
,
Z.
Liu
,
W.
Zhou
, and
M.
Hammar
, “
Buried InP/airhole photonic-crystal surface-emitting lasers
,”
Phys. Status Solidi A
218
(
3
),
2000416
(
2021
).
18.
Z.
Bian
,
K. J.
Rae
,
A. F.
McKenzie
,
B. C.
King
,
N.
Babazadeh
,
G.
Li
,
J. R.
Orchard
,
N. D.
Gerrard
,
S.
Thoms
,
D. A.
MacLaren
,
R. J. E.
Taylor
,
D.
Childs
, and
R. A.
Hogg
, “
1.5 μm epitaxially regrown photonic crystal surface emitting laser diode
,”
IEEE Photonics Technol. Lett.
32
(
24
),
1531
1534
(
2020
).
19.
Q.
Liu
,
J.
Bin
,
K.
Feng
,
L.
Cheng
,
L.
Zhao
,
G.
Wu
, and
J.
Chen
, “
Design of GaN-based photonic crystal surface emitting lasers with top TiO2 photonic crystals
,”
Results Phys.
33
,
105164
(
2022
).
20.
J.
Bin
,
K.
Feng
,
W.
Shen
,
M.
Meng
, and
Q.
Liu
, “
Investigation on GaN-based membrane photonic crystal surface emitting lasers
,”
Materials
15
(
4
),
1479
(
2022
).
21.
Q.
Liu
,
Z.
Wang
,
X.
Ma
,
J.
Wang
, and
W.
Zhou
, “
Design of GaN-based PCSEL with temperature-insensitive lasing wavelength
,”
IEEE Photonics J.
13
(
4
),
1500306
(
2021
).
22.
H.
Matsubara
,
S.
Yoshimoto
,
H.
Saito
,
Y.
Jianglin
,
Y.
Tanaka
, and
S.
Noda
, “
GaN photonic-crystal surface-emitting laser at blue-violet wavelengths
,”
Science
319
(
5862
),
445
447
(
2008
).
23.
C. H.
Pan
,
C. H.
Lin
,
T. Y.
Chang
,
T. C.
Lu
, and
C. P.
Lee
, “
GaSb-based mid infrared photonic crystal surface emitting lasers
,”
Opt. Express
23
(
9
),
11741
11747
(
2015
).
24.
Z.-L.
Li
,
S.-C.
Lin
,
G.
Lin
,
H.-W.
Cheng
,
K.-W.
Sun
, and
C.-P.
Lee
, “
Effect of etching depth on threshold characteristics of GaSb-based middle infrared photonic-crystal surface-emitting lasers
,”
Micromachines
10
(
3
),
188
(
2019
).
25.
C.
Reuterskiöld Hedlund
,
S.-C.
Liu
,
D.
Zhao
,
W.
Zhou
, and
M.
Hammar
, “
Buried-tunnel junction current injection for InP-based nanomembrane photonic crystal surface emitting lasers on silicon
,”
Phys. Status Solidi A
217
(
3
),
1900527
(
2020
).
26.
D. Y.
Zhao
,
S. C.
Liu
,
H. J.
Yang
,
Z. Q.
Ma
,
C.
Reuterskiold-Hedlund
,
M.
Hammar
, and
W. D.
Zhou
, “
Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon
,”
Sci. Rep.
6
,
18860
(
2016
).
27.
S.-C.
Liu
,
D.
Zhao
,
X.
Ge
,
C.
Reuterskiöld-Hedlund
,
M.
Hammar
,
S.
Fan
,
Z.
Ma
, and
W.
Zhou
, “
Size scaling of photonic crystal surface emitting lasers on silicon substrates
,”
IEEE Photonics J.
10
(
3
),
4500506
(
2018
).
28.
H.-Y.
Lu
,
S.-C.
Tian
,
C.-Z.
Tong
,
L.-J.
Wang
,
J.-M.
Rong
,
C.-Y.
Liu
,
H.
Wang
,
S.-L.
Shu
, and
L.-J.
Wang
, “
Extracting more light for vertical emission: High power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band
,”
Light: Sci. Appl.
8
(
1
),
108
(
2019
).
29.
A. R. K.
Kalapala
,
C.
Guo
,
L.
Overman
,
M.
Vasilyev
,
J.
Coleman
, and
W.
Zhou
, in
IEEE Photonics Conference (IPC)
(
IEEE
,
2021
).
30.
R. J. E.
Taylor
,
D. T. D.
Childs
,
P.
Ivanov
,
B. J.
Stevens
,
N.
Babazadeh
,
A. J.
Crombie
,
G.
Ternent
,
S.
Thoms
,
H.
Zhou
, and
R. A.
Hogg
, “
Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers
,”
Sci. Rep.
5
(
1
),
13203
(
2015
).
31.
S.
Noda
,
K.
Kitamura
,
T.
Okino
,
D.
Yasuda
, and
Y.
Tanaka
, “
Photonic-crystal surface-emitting lasers: Review and introduction of modulated-photonic crystals
,”
IEEE J. Sel. Top. Quantum Electron.
23
(
6
),
4900107
(
2017
).
32.
Y.-H.
Hong
,
W.-C.
Miao
,
W.-C.
Hsu
,
K.-B.
Hong
,
C.-L.
Lin
,
C.
Lin
,
S.-C.
Chen
, and
H.-C.
Kuo
, “
Progress of photonic-crystal surface-emitting lasers: A paradigm shift in LiDAR application
,”
Crystals
12
(
6
),
800
(
2022
).
33.
L.-R.
Chen
,
K.-B.
Hong
,
H.-L.
Chen
,
K.-C.
Huang
, and
T.-C.
Lu
, “
Vertically integrated diffractive gratings on photonic crystal surface emitting lasers
,”
Sci. Rep.
11
(
1
),
2427
(
2021
).
34.
M.
Yoshida
,
M.
De Zoysa
,
K.
Ishizaki
,
W.
Kunishi
,
T.
Inoue
,
K.
Izumi
,
R.
Hatsuda
, and
S.
Noda
, “
Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR
,”
J. Phys. Photonics
3
(
2
),
022006
(
2021
).
35.
C.-Y.
Peng
,
H.-T.
Cheng
,
Y.-H.
Hong
,
W.-C.
Hsu
,
F.-H.
Hsiao
,
T.-C.
Lu
,
S.-W.
Chang
,
S.-C.
Chen
,
C.-H.
Wu
, and
H.-C.
Kuo
, “
Performance analyses of photonic-crystal surface-emitting laser: Toward high-speed optical communication
,”
Nanoscale Res. Lett.
17
(
1
),
90
(
2022
).
36.
T.
Inoue
,
M.
Yoshida
,
M. D.
Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation
,”
Opt. Express
28
(
4
),
5050
5057
(
2020
).
37.
H.
Yang
,
D.
Zhao
,
S.
Chuwongin
,
J.-H.
Seo
,
W.
Yang
,
Y.
Shuai
,
J.
Berggren
,
M.
Hammar
,
Z.
Ma
, and
W.
Zhou
, “
Transfer-printed stacked nanomembrane lasers on silicon
,”
Nat. Photonics
6
(
9
),
615
620
(
2012
).
38.
M.
Imada
,
A.
Chutinan
,
S.
Noda
, and
M.
Mochizuki
, “
Multidirectionally distributed feedback photonic crystal lasers
,”
Phys. Rev. B
65
(
19
),
195306
(
2002
).
39.
S.
Rapp
,
F.
Salomonsson
,
K.
Streubel
,
S.
Mogg
,
F.
Wennekes
,
J.
Bentell
, and
M.
Hammar
, “
All-epitaxial single-fused 1.55 μm vertical cavity laser based on an InP Bragg reflector
,”
Jpn. J. Appl. Phys., Part 1
38
(
2S
),
1261
(
1999
).
40.
X.
Ge
,
M.
Minkov
,
S.
Fan
,
X.
Li
, and
W.
Zhou
, “
Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling
,”
Appl. Phys. Lett.
112
(
14
),
141105
(
2018
).
41.
S. H.
Fan
and
J. D.
Joannopoulos
, “
Analysis of guided resonances in photonic crystal slabs
,”
Phys. Rev. B
65
(
23
),
5112
(
2002
).
42.
T.
Inoue
,
M.
Yoshida
,
J.
Gelleta
,
K.
Izumi
,
K.
Yoshida
,
K.
Ishizaki
,
M.
De Zoysa
, and
S.
Noda
, “
General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation
,”
Nat. Commun.
13
(
1
),
3262
(
2022
).
43.
R.
Contractor
,
W.
Noh
,
W.
Redjem
,
W.
Qarony
,
E.
Martin
,
S.
Dhuey
,
A.
Schwartzberg
, and
B.
Kanté
, “
Scalable single-mode surface-emitting laser via open-Dirac singularities
,”
Nature
608
(
7924
),
692
698
(
2022
).
44.
A. Y.
Song
,
A. R. K.
Kalapala
,
W.
Zhou
, and
S.
Fan
, “
First-principles simulation of photonic crystal surface-emitting lasers using rigorous coupled wave analysis
,”
Appl. Phys. Lett.
113
(
4
),
41106
(
2018
).
45.
V.
Liu
and
S.
Fan
, “
S4: A free electromagnetic solver for layered periodic structures
,”
Comput. Phys. Commun.
183
,
2233
(
2012
).
46.
M.
Zhou
,
A. R.
Kumar Kalapala
,
M.
Pan
,
R.
Gibson
,
K. J.
Reilly
,
T.
Rotter
,
G.
Balakrishnan
,
R.
Bedford
,
W.
Zhou
, and
S.
Fan
, “
Increasing the Q-contrast in large photonic crystal slab resonators using bound-states-in-continuum
,”
ACS Photonics
10
(
5
),
1519
1528
(
2023
).
47.
B.
Weigl
,
M.
Grabherr
,
C.
Jung
,
R.
Jager
,
G.
Reiner
,
R.
Michalzik
,
D.
Sowada
, and
K. J.
Ebeling
, “
High-performance oxide-confined GaAs VCSELs
,”
IEEE J. Sel. Top. Quantum Electron.
3
(
2
),
409
415
(
1997
).
48.
N.
Haghighi
,
P.
Moser
, and
J. A.
Lott
, “
Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
6
),
1700615
(
2019
).
49.
T.
Hamaguchi
, “
GaN-based VCSELs with a monolithic curved mirror: Challenges and prospects
,”
Photonics
10
(
4
),
470
(
2023
).
50.
T.
Hamaguchi
,
M.
Tanaka
, and
H.
Nakajima
, “
A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation
,”
Jpn. J. Appl. Phys., Part 1
58
(
SC
),
SC0806
(
2019
).
51.
W.-J.
Liu
,
X.-L.
Hu
,
L.-Y.
Ying
,
J.-Y.
Zhang
, and
B.-P.
Zhang
, “
Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers
,”
Appl. Phys. Lett.
104
(
25
),
251116
(
2014
).
52.
A.
Babichev
,
S.
Blokhin
,
A.
Gladyshev
,
L.
Karachinsky
,
I.
Novikov
,
A.
Blokhin
,
M.
Bobrov
,
N.
Maleev
,
V.
Andryushkin
,
E.
Kolodeznyi
,
D.
Denisov
,
N.
Kryzhanovskaya
,
K.
Voropaev
,
V.
Ustinov
,
A.
Egorov
,
H.
Li
,
S.-C.
Tian
,
S.
Han
,
G.
Sapunov
, and
D.
Bimberg
, “
Single-mode high-speed 1550 nm wafer fused VCSELs for narrow WDM systems
,”
IEEE Photonics Technol. Lett.
35
(
6
),
297
300
(
2023
).
53.
M.-C.
Amann
and
W.
Hofmann
, “
InP-based long-wavelength VCSELs and VCSEL arrays
,”
IEEE J. Sel. Top. Quantum Electron.
15
(
3
),
861
868
(
2009
).
54.
R.
Michalzik
,
VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers
, edited by
R.
Michalzik
(
Springer
,
Berlin/Heidelberg
,
2013
), pp.
19
75
.
55.
M.
Pan
,
C.
Gautam
,
A.
Kalapala
,
Y.
Chen
,
T.
Rotter
,
M.
Zhou
,
R.
Gibson
,
R.
Bedford
,
S.
Fan
,
G.
Balakrishnan
, and
W.
Zhou
, in
IEEE Photonics Conference (IPC)
(
IEEE
,
2023
).
56.
T. L.
Paoli
and
J. E.
Ripper
, “
Direct modulation of semiconductor lasers
,”
Proc. IEEE
58
(
10
),
1457
1465
(
1970
).
57.
B.
Kaldvee
,
A.
Ehn
,
J.
Bood
, and
M.
Aldén
, “
Development of a picosecond lidar system for large-scale combustion diagnostics
,”
Appl. Opt.
48
(
4
),
B65
B72
(
2009
).
58.
A.
Weck
,
T. H. R.
Crawford
,
D. S.
Wilkinson
,
H. K.
Haugen
, and
J. S.
Preston
, “
Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses
,”
Appl. Phys. A
90
(
3
),
537
543
(
2008
).
59.
A. K.
Sahu
,
J.
Malhotra
, and
S.
Jha
, “
Laser-based hybrid micromachining processes: A review
,”
Opt. Laser Technol.
146
,
107554
(
2022
).
60.
R.
Morita
,
T.
Inoue
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation
,”
Nat. Photonics
15
(
4
),
311
318
(
2021
).
61.
M.
Osinski
and
J.
Buus
, “
Linewidth broadening factor in semiconductor lasers–An overview
,”
IEEE J. Quantum Electron.
23
(
1
),
9
29
(
1987
).
62.
M.
Pollnau
and
M.
Eichhorn
, “
Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation
,”
Prog. Quantum Electron.
72
,
100255
(
2020
).
63.
C.
Henry
, “
Theory of the linewidth of semiconductor lasers
,”
IEEE J. Quantum Electron.
18
(
2
),
259
264
(
1982
).
64.
C. T.
Santis
,
S. T.
Steger
,
Y.
Vilenchik
,
A.
Vasilyev
, and
A.
Yariv
, “
High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
8
),
2879
2884
(
2014
).
65.
T.
Inoue
,
T.
Kim
,
S.
Katsuno
,
R.
Morita
,
M.
Yoshida
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Measurement and numerical analysis of intrinsic spectral linewidths of photonic-crystal surface-emitting lasers
,”
Appl. Phys. Lett.
122
(
5
),
051101
(
2023
).
66.
Y.-C.
Shuai
,
D.
Zhao
,
Y.
Liu
,
C.
Stambaugh
,
J.
Lawall
, and
W.
Zhou
, “
Coupled bilayer photonic crystal slab electro-optic spatial light modulators
,”
IEEE Photonics J.
9
(
2
),
7101411
(
2017
).
67.
M. S.
Pan
,
Z. H.
Liu
,
A. R. K.
Kalapala
,
Y. D.
Chen
,
Y. Z.
Sun
, and
W. D.
Zhou
, “
Complete 2π phase control by photonic crystal slabs
,”
Opt. Express
29
(
25
),
40795
40803
(
2021
).
68.
M.
Pan
,
A.
Liu
,
Z.
Liu
, and
W.
Zhou
, “
High-speed tunable optical absorber based on a coupled photonic crystal slab and monolayer graphene structure
,”
Opt. Express
30
(
26
),
47612
47624
(
2022
).
69.
Z.
Liu
,
M.
Pan
,
A.
Liu
,
G.
Kelly
,
M.
Sampsell
,
J.
Liu
, and
W.
Zhou
, in
IEEE Photonics Conference (IPC)
(
IEEE
,
2022
).
70.
A.
Liu
,
M.
Pan
,
Z.
Liu
, and
W.
Zhou
, in
IEEE Sensors
(
IEEE
,
2022
).
71.
O. B.
Shchekin
and
D. G.
Deppe
, “
1.3 μm InAs quantum dot laser with To = 161 K from 0 to 80 °C
,”
Appl. Phys. Lett.
80
(
18
),
3277
3279
(
2002
).
72.
M.
Sugawara
,
N.
Hatori
,
M.
Ishida
,
H.
Ebe
,
Y.
Arakawa
,
T.
Akiyama
,
K.
Otsubo
,
T.
Yamamoto
, and
Y.
Nakata
, “
Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers
,”
J. Phys. D
38
(
13
),
2126
2134
(
2005
).
73.
D. L.
Huffaker
,
G.
Park
,
Z.
Zou
,
O. B.
Shchekin
, and
D. G.
Deppe
, “
1.3 μm room-temperature GaAs-based quantum-dot laser
,”
Appl. Phys. Lett.
73
(
18
),
2564
2566
(
1998
).
74.
M.-Y.
Hsu
,
G.
Lin
, and
C.-H.
Pan
, “
Electrically injected 1.3μm quantum-dot photonic-crystal surface-emitting lasers
,”
Opt. Express
25
(
26
),
32697
32704
(
2017
).
You do not currently have access to this content.