Semiconductor lasers are the heart for the development of technologies in many fields. In recent decades, a new type of large-area surface-emitting lasers based on the in-plane photonic crystal modulation and feedback have emerged to show superior advantages of high output power, low-divergence, high beam quality and brightness, and compact and monolithic structure. In this paper, we review the design and development of photonic crystal surface-emitting laser and discuss the future investigation and improvements.
REFERENCES
1.
M.
Imada
,
S.
Noda
,
A.
Chutinan
,
T.
Tokuda
,
M.
Murata
, and
G.
Sasaki
, “
Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure
,” Appl. Phys. Lett.
75
(3
), 316
–318
(1999
).2.
K.
Hirose
,
Y.
Liang
,
Y.
Kurosaka
,
A.
Watanabe
,
T.
Sugiyama
, and
S.
Noda
, “
Watt-class high-power, high-beam-quality photonic-crystal lasers
,” Nat. Photonics
8
(5
), 406
–411
(2014
).3.
M.
Yoshida
,
M.
De Zoysa
,
K.
Ishizaki
,
Y.
Tanaka
,
M.
Kawasaki
,
R.
Hatsuda
,
B.
Song
,
J.
Gelleta
, and
S.
Noda
, “
Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams
,” Nat. Mater.
18
(2
), 121
(2019
).4.
M.
Yoshida
,
S.
Katsuno
,
T.
Inoue
,
J.
Gelleta
,
K.
Izumi
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
High-brightness scalable continuous-wave single-mode photonic-crystal laser
,” Nature
618
(7966
), 727
–732
(2023
).5.
R. J. E.
Taylor
,
D. T. D.
Childs
,
P.
Ivanov
,
B.
Stevens
,
N.
Babazadeh
,
J.
Sarma
,
S.
Khamas
,
A. J.
Crombie
,
G. R.
Li
,
G.
Ternent
,
S.
Thoms
,
H. P.
Zhou
, and
R. A.
Hogg
, “
Coherently coupled photonic-crystal surface-emitting laser array
,” IEEE J. Select. Top. Quantum Electron.
21
(6
), 493
(2015
).6.
B.
King
,
K. J.
Rae
,
A. F.
McKenzie
,
A.
Boldin
,
D.
Kim
,
N. D.
Gerrard
,
G. R.
Li
,
K.
Nishi
,
K.
Takemasa
,
M.
Sugawara
,
R. J. E.
Taylor
,
D. T. D.
Childs
, and
R. A.
Hogg
, “
Coherent power scaling in photonic crystal surface emitting laser arrays
,” AIP Adv.
11
(1
), 15017
(2021
).7.
A.
Kalapala
,
A.
Song
,
M.
Pan
,
C.
Gautam
,
L.
Overman
,
K.
Reilly
,
T.
Rotter
,
G.
Balakrishnan
,
R.
Gibson
,
R.
Bedford
,
J. J.
Coleman
,
S.
Fan
, and
W.
Zhou
, “
Scaling challenges in high power photonic crystal surface-emitting lasers
,” IEEE J. Quantum Electron.
58
, 21952180
(2022
).8.
A. R. K.
Kalapala
,
K.
Reilly
,
T.
Rotter
,
C.
Gautam
,
M.
Pan
,
Z.
Liu
,
Y.
Chen
,
M.
Zhou
,
R.
Gibson
,
R.
Bedford
,
L.
Overman
,
S.
Fan
,
G.
Balakrishnan
, and
W.
Zhou
, in IEEE Photonics Conference (IPC)
(
IEEE
, 2022
).9.
X.
Ge
,
M.
Minkov
,
S.
Fan
,
X.
Li
, and
W.
Zhou
, “
Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide
,” npj 2D Mater. Appl.
3
(1
), 16
(2019
).10.
D. M.
Williams
,
K. M.
Groom
,
B. J.
Stevens
,
D. T. D.
Childs
,
R. J. E.
Taylor
,
S.
Khamas
,
R. A.
Hogg
,
N.
Ikeda
, and
Y.
Sugimoto
, “
Epitaxially regrown GaAs-based photonic crystal surface-emitting laser
,” IEEE Photonics Technol. Lett.
24
(11
), 966
–968
(2012
).11.
K. J.
Reilly
,
A.
Kalapala
,
S.
Yeom
,
S. J.
Addamane
,
E.
Renteria
,
W.
Zhou
, and
G.
Balakrishnan
, “
Epitaxial regrowth and hole shape engineering for photonic crystal surface emitting lasers (PCSELs)
,” J. Cryst. Growth
535
, 125531
(2020
).12.
A. R. K.
Kalapala
,
S.
Yeom
,
S. J.
Addamane
,
K. J.
Reilly
,
A.
Song
,
R.
Gibson
,
G.
Balakrishnan
,
R.
Bedford
,
S.
Fan
, and
W.
Zhou
, in IEEE Photonics Conference (IPC)
(
IEEE
, 2019
).13.
K. J.
Reilly
,
A.
Kalapala
,
A.
Song
,
T.
Rotter
,
Z.
Liu
,
E.
Renteria
,
S.
Fan
,
W.
Zhou
, and
G.
Balakrishnan
, in Conference on Lasers and Electro-Optics
, edited by
J.
Kang
,
S.
Tomasulo
,
I.
Ilev
,
D.
Müller
,
N.
Litchinitser
,
S.
Polyakov
,
V.
Podolskiy
,
J.
Nunn
,
C.
Dorrer
,
T.
Fortier
,
Q.
Gan
, and
C.
Saraceno
(
Optica Publishing Group
,
San Jose, CA
, 2021
).14.
H.-L.
Chiu
,
K.-B.
Hong
,
K.-C.
Huang
, and
T.-C.
Lu
, “
Photonic crystal surface emitting lasers with naturally formed periodic ITO structures
,” ACS Photonics
6
(3
), 684
–690
(2019
).15.
Y.
Itoh
,
N.
Kono
,
D.
Inoue
,
N.
Fujiwara
,
M.
Ogasawara
,
K.
Fujii
,
H.
Yoshinaga
,
H.
Yagi
,
M.
Yanagisawa
,
M.
Yoshida
,
T.
Inoue
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
High-power CW oscillation of 1.3-μm wavelength InP-based photonic-crystal surface-emitting lasers
,” Opt. Express
30
(16
), 29539
–29545
(2022
).16.
W.
Zhou
,
S.-C.
Liu
,
X.
Ge
,
D.
Zhao
,
H.
Yang
,
C.
Reuterskiöld-Hedlund
, and
M.
Hammar
, “
On-chip photonic crystal surface-emitting membrane lasers
,” IEEE J. Sel. Top. Quantum Electron.
25
(3
), 18586092
(2019
).17.
C.
Reuterskiöld Hedlund
,
J.
Martins De Pina
,
A.
Kalapala
,
Z.
Liu
,
W.
Zhou
, and
M.
Hammar
, “
Buried InP/airhole photonic-crystal surface-emitting lasers
,” Phys. Status Solidi A
218
(3
), 2000416
(2021
).18.
Z.
Bian
,
K. J.
Rae
,
A. F.
McKenzie
,
B. C.
King
,
N.
Babazadeh
,
G.
Li
,
J. R.
Orchard
,
N. D.
Gerrard
,
S.
Thoms
,
D. A.
MacLaren
,
R. J. E.
Taylor
,
D.
Childs
, and
R. A.
Hogg
, “
1.5 μm epitaxially regrown photonic crystal surface emitting laser diode
,” IEEE Photonics Technol. Lett.
32
(24
), 1531
–1534
(2020
).19.
Q.
Liu
,
J.
Bin
,
K.
Feng
,
L.
Cheng
,
L.
Zhao
,
G.
Wu
, and
J.
Chen
, “
Design of GaN-based photonic crystal surface emitting lasers with top TiO2 photonic crystals
,” Results Phys.
33
, 105164
(2022
).20.
J.
Bin
,
K.
Feng
,
W.
Shen
,
M.
Meng
, and
Q.
Liu
, “
Investigation on GaN-based membrane photonic crystal surface emitting lasers
,” Materials
15
(4
), 1479
(2022
).21.
Q.
Liu
,
Z.
Wang
,
X.
Ma
,
J.
Wang
, and
W.
Zhou
, “
Design of GaN-based PCSEL with temperature-insensitive lasing wavelength
,” IEEE Photonics J.
13
(4
), 1500306
(2021
).22.
H.
Matsubara
,
S.
Yoshimoto
,
H.
Saito
,
Y.
Jianglin
,
Y.
Tanaka
, and
S.
Noda
, “
GaN photonic-crystal surface-emitting laser at blue-violet wavelengths
,” Science
319
(5862
), 445
–447
(2008
).23.
C. H.
Pan
,
C. H.
Lin
,
T. Y.
Chang
,
T. C.
Lu
, and
C. P.
Lee
, “
GaSb-based mid infrared photonic crystal surface emitting lasers
,” Opt. Express
23
(9
), 11741
–11747
(2015
).24.
Z.-L.
Li
,
S.-C.
Lin
,
G.
Lin
,
H.-W.
Cheng
,
K.-W.
Sun
, and
C.-P.
Lee
, “
Effect of etching depth on threshold characteristics of GaSb-based middle infrared photonic-crystal surface-emitting lasers
,” Micromachines
10
(3
), 188
(2019
).25.
C.
Reuterskiöld Hedlund
,
S.-C.
Liu
,
D.
Zhao
,
W.
Zhou
, and
M.
Hammar
, “
Buried-tunnel junction current injection for InP-based nanomembrane photonic crystal surface emitting lasers on silicon
,” Phys. Status Solidi A
217
(3
), 1900527
(2020
).26.
D. Y.
Zhao
,
S. C.
Liu
,
H. J.
Yang
,
Z. Q.
Ma
,
C.
Reuterskiold-Hedlund
,
M.
Hammar
, and
W. D.
Zhou
, “
Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon
,” Sci. Rep.
6
, 18860
(2016
).27.
S.-C.
Liu
,
D.
Zhao
,
X.
Ge
,
C.
Reuterskiöld-Hedlund
,
M.
Hammar
,
S.
Fan
,
Z.
Ma
, and
W.
Zhou
, “
Size scaling of photonic crystal surface emitting lasers on silicon substrates
,” IEEE Photonics J.
10
(3
), 4500506
(2018
).28.
H.-Y.
Lu
,
S.-C.
Tian
,
C.-Z.
Tong
,
L.-J.
Wang
,
J.-M.
Rong
,
C.-Y.
Liu
,
H.
Wang
,
S.-L.
Shu
, and
L.-J.
Wang
, “
Extracting more light for vertical emission: High power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band
,” Light: Sci. Appl.
8
(1
), 108
(2019
).29.
A. R. K.
Kalapala
,
C.
Guo
,
L.
Overman
,
M.
Vasilyev
,
J.
Coleman
, and
W.
Zhou
, in IEEE Photonics Conference (IPC)
(
IEEE
, 2021
).30.
R. J. E.
Taylor
,
D. T. D.
Childs
,
P.
Ivanov
,
B. J.
Stevens
,
N.
Babazadeh
,
A. J.
Crombie
,
G.
Ternent
,
S.
Thoms
,
H.
Zhou
, and
R. A.
Hogg
, “
Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers
,” Sci. Rep.
5
(1
), 13203
(2015
).31.
S.
Noda
,
K.
Kitamura
,
T.
Okino
,
D.
Yasuda
, and
Y.
Tanaka
, “
Photonic-crystal surface-emitting lasers: Review and introduction of modulated-photonic crystals
,” IEEE J. Sel. Top. Quantum Electron.
23
(6
), 4900107
(2017
).32.
Y.-H.
Hong
,
W.-C.
Miao
,
W.-C.
Hsu
,
K.-B.
Hong
,
C.-L.
Lin
,
C.
Lin
,
S.-C.
Chen
, and
H.-C.
Kuo
, “
Progress of photonic-crystal surface-emitting lasers: A paradigm shift in LiDAR application
,” Crystals
12
(6
), 800
(2022
).33.
L.-R.
Chen
,
K.-B.
Hong
,
H.-L.
Chen
,
K.-C.
Huang
, and
T.-C.
Lu
, “
Vertically integrated diffractive gratings on photonic crystal surface emitting lasers
,” Sci. Rep.
11
(1
), 2427
(2021
).34.
M.
Yoshida
,
M.
De Zoysa
,
K.
Ishizaki
,
W.
Kunishi
,
T.
Inoue
,
K.
Izumi
,
R.
Hatsuda
, and
S.
Noda
, “
Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR
,” J. Phys. Photonics
3
(2
), 022006
(2021
).35.
C.-Y.
Peng
,
H.-T.
Cheng
,
Y.-H.
Hong
,
W.-C.
Hsu
,
F.-H.
Hsiao
,
T.-C.
Lu
,
S.-W.
Chang
,
S.-C.
Chen
,
C.-H.
Wu
, and
H.-C.
Kuo
, “
Performance analyses of photonic-crystal surface-emitting laser: Toward high-speed optical communication
,” Nanoscale Res. Lett.
17
(1
), 90
(2022
).36.
T.
Inoue
,
M.
Yoshida
,
M. D.
Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation
,” Opt. Express
28
(4
), 5050
–5057
(2020
).37.
H.
Yang
,
D.
Zhao
,
S.
Chuwongin
,
J.-H.
Seo
,
W.
Yang
,
Y.
Shuai
,
J.
Berggren
,
M.
Hammar
,
Z.
Ma
, and
W.
Zhou
, “
Transfer-printed stacked nanomembrane lasers on silicon
,” Nat. Photonics
6
(9
), 615
–620
(2012
).38.
M.
Imada
,
A.
Chutinan
,
S.
Noda
, and
M.
Mochizuki
, “
Multidirectionally distributed feedback photonic crystal lasers
,” Phys. Rev. B
65
(19
), 195306
(2002
).39.
S.
Rapp
,
F.
Salomonsson
,
K.
Streubel
,
S.
Mogg
,
F.
Wennekes
,
J.
Bentell
, and
M.
Hammar
, “
All-epitaxial single-fused 1.55 μm vertical cavity laser based on an InP Bragg reflector
,” Jpn. J. Appl. Phys., Part 1
38
(2S
), 1261
(1999
).40.
X.
Ge
,
M.
Minkov
,
S.
Fan
,
X.
Li
, and
W.
Zhou
, “
Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling
,” Appl. Phys. Lett.
112
(14
), 141105
(2018
).41.
S. H.
Fan
and
J. D.
Joannopoulos
, “
Analysis of guided resonances in photonic crystal slabs
,” Phys. Rev. B
65
(23
), 5112
(2002
).42.
T.
Inoue
,
M.
Yoshida
,
J.
Gelleta
,
K.
Izumi
,
K.
Yoshida
,
K.
Ishizaki
,
M.
De Zoysa
, and
S.
Noda
, “
General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation
,” Nat. Commun.
13
(1
), 3262
(2022
).43.
R.
Contractor
,
W.
Noh
,
W.
Redjem
,
W.
Qarony
,
E.
Martin
,
S.
Dhuey
,
A.
Schwartzberg
, and
B.
Kanté
, “
Scalable single-mode surface-emitting laser via open-Dirac singularities
,” Nature
608
(7924
), 692
–698
(2022
).44.
A. Y.
Song
,
A. R. K.
Kalapala
,
W.
Zhou
, and
S.
Fan
, “
First-principles simulation of photonic crystal surface-emitting lasers using rigorous coupled wave analysis
,” Appl. Phys. Lett.
113
(4
), 41106
(2018
).45.
V.
Liu
and
S.
Fan
, “
S4: A free electromagnetic solver for layered periodic structures
,” Comput. Phys. Commun.
183
, 2233
(2012
).46.
M.
Zhou
,
A. R.
Kumar Kalapala
,
M.
Pan
,
R.
Gibson
,
K. J.
Reilly
,
T.
Rotter
,
G.
Balakrishnan
,
R.
Bedford
,
W.
Zhou
, and
S.
Fan
, “
Increasing the Q-contrast in large photonic crystal slab resonators using bound-states-in-continuum
,” ACS Photonics
10
(5
), 1519
–1528
(2023
).47.
B.
Weigl
,
M.
Grabherr
,
C.
Jung
,
R.
Jager
,
G.
Reiner
,
R.
Michalzik
,
D.
Sowada
, and
K. J.
Ebeling
, “
High-performance oxide-confined GaAs VCSELs
,” IEEE J. Sel. Top. Quantum Electron.
3
(2
), 409
–415
(1997
).48.
N.
Haghighi
,
P.
Moser
, and
J. A.
Lott
, “
Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays
,” IEEE J. Sel. Top. Quantum Electron.
25
(6
), 1700615
(2019
).49.
T.
Hamaguchi
, “
GaN-based VCSELs with a monolithic curved mirror: Challenges and prospects
,” Photonics
10
(4
), 470
(2023
).50.
T.
Hamaguchi
,
M.
Tanaka
, and
H.
Nakajima
, “
A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation
,” Jpn. J. Appl. Phys., Part 1
58
(SC
), SC0806
(2019
).51.
W.-J.
Liu
,
X.-L.
Hu
,
L.-Y.
Ying
,
J.-Y.
Zhang
, and
B.-P.
Zhang
, “
Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers
,” Appl. Phys. Lett.
104
(25
), 251116
(2014
).52.
A.
Babichev
,
S.
Blokhin
,
A.
Gladyshev
,
L.
Karachinsky
,
I.
Novikov
,
A.
Blokhin
,
M.
Bobrov
,
N.
Maleev
,
V.
Andryushkin
,
E.
Kolodeznyi
,
D.
Denisov
,
N.
Kryzhanovskaya
,
K.
Voropaev
,
V.
Ustinov
,
A.
Egorov
,
H.
Li
,
S.-C.
Tian
,
S.
Han
,
G.
Sapunov
, and
D.
Bimberg
, “
Single-mode high-speed 1550 nm wafer fused VCSELs for narrow WDM systems
,” IEEE Photonics Technol. Lett.
35
(6
), 297
–300
(2023
).53.
M.-C.
Amann
and
W.
Hofmann
, “
InP-based long-wavelength VCSELs and VCSEL arrays
,” IEEE J. Sel. Top. Quantum Electron.
15
(3
), 861
–868
(2009
).54.
R.
Michalzik
, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers
, edited by
R.
Michalzik
(
Springer
,
Berlin/Heidelberg
, 2013
), pp. 19
–75
.55.
M.
Pan
,
C.
Gautam
,
A.
Kalapala
,
Y.
Chen
,
T.
Rotter
,
M.
Zhou
,
R.
Gibson
,
R.
Bedford
,
S.
Fan
,
G.
Balakrishnan
, and
W.
Zhou
, in IEEE Photonics Conference (IPC)
(
IEEE
, 2023
).56.
T. L.
Paoli
and
J. E.
Ripper
, “
Direct modulation of semiconductor lasers
,” Proc. IEEE
58
(10
), 1457
–1465
(1970
).57.
B.
Kaldvee
,
A.
Ehn
,
J.
Bood
, and
M.
Aldén
, “
Development of a picosecond lidar system for large-scale combustion diagnostics
,” Appl. Opt.
48
(4
), B65
–B72
(2009
).58.
A.
Weck
,
T. H. R.
Crawford
,
D. S.
Wilkinson
,
H. K.
Haugen
, and
J. S.
Preston
, “
Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses
,” Appl. Phys. A
90
(3
), 537
–543
(2008
).59.
A. K.
Sahu
,
J.
Malhotra
, and
S.
Jha
, “
Laser-based hybrid micromachining processes: A review
,” Opt. Laser Technol.
146
, 107554
(2022
).60.
R.
Morita
,
T.
Inoue
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation
,” Nat. Photonics
15
(4
), 311
–318
(2021
).61.
M.
Osinski
and
J.
Buus
, “
Linewidth broadening factor in semiconductor lasers–An overview
,” IEEE J. Quantum Electron.
23
(1
), 9
–29
(1987
).62.
M.
Pollnau
and
M.
Eichhorn
, “
Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation
,” Prog. Quantum Electron.
72
, 100255
(2020
).63.
C.
Henry
, “
Theory of the linewidth of semiconductor lasers
,” IEEE J. Quantum Electron.
18
(2
), 259
–264
(1982
).64.
C. T.
Santis
,
S. T.
Steger
,
Y.
Vilenchik
,
A.
Vasilyev
, and
A.
Yariv
, “
High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms
,” Proc. Natl. Acad. Sci. U. S. A.
111
(8
), 2879
–2884
(2014
).65.
T.
Inoue
,
T.
Kim
,
S.
Katsuno
,
R.
Morita
,
M.
Yoshida
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Measurement and numerical analysis of intrinsic spectral linewidths of photonic-crystal surface-emitting lasers
,” Appl. Phys. Lett.
122
(5
), 051101
(2023
).66.
Y.-C.
Shuai
,
D.
Zhao
,
Y.
Liu
,
C.
Stambaugh
,
J.
Lawall
, and
W.
Zhou
, “
Coupled bilayer photonic crystal slab electro-optic spatial light modulators
,” IEEE Photonics J.
9
(2
), 7101411
(2017
).67.
M. S.
Pan
,
Z. H.
Liu
,
A. R. K.
Kalapala
,
Y. D.
Chen
,
Y. Z.
Sun
, and
W. D.
Zhou
, “
Complete 2π phase control by photonic crystal slabs
,” Opt. Express
29
(25
), 40795
–40803
(2021
).68.
M.
Pan
,
A.
Liu
,
Z.
Liu
, and
W.
Zhou
, “
High-speed tunable optical absorber based on a coupled photonic crystal slab and monolayer graphene structure
,” Opt. Express
30
(26
), 47612
–47624
(2022
).69.
Z.
Liu
,
M.
Pan
,
A.
Liu
,
G.
Kelly
,
M.
Sampsell
,
J.
Liu
, and
W.
Zhou
, in IEEE Photonics Conference (IPC)
(
IEEE
, 2022
).70.
A.
Liu
,
M.
Pan
,
Z.
Liu
, and
W.
Zhou
, in IEEE Sensors
(
IEEE
, 2022
).71.
O. B.
Shchekin
and
D. G.
Deppe
, “
1.3 μm InAs quantum dot laser with To = 161 K from 0 to 80 °C
,” Appl. Phys. Lett.
80
(18
), 3277
–3279
(2002
).72.
M.
Sugawara
,
N.
Hatori
,
M.
Ishida
,
H.
Ebe
,
Y.
Arakawa
,
T.
Akiyama
,
K.
Otsubo
,
T.
Yamamoto
, and
Y.
Nakata
, “
Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers
,” J. Phys. D
38
(13
), 2126
–2134
(2005
).73.
D. L.
Huffaker
,
G.
Park
,
Z.
Zou
,
O. B.
Shchekin
, and
D. G.
Deppe
, “
1.3 μm room-temperature GaAs-based quantum-dot laser
,” Appl. Phys. Lett.
73
(18
), 2564
–2566
(1998
).74.
M.-Y.
Hsu
,
G.
Lin
, and
C.-H.
Pan
, “
Electrically injected 1.3μm quantum-dot photonic-crystal surface-emitting lasers
,” Opt. Express
25
(26
), 32697
–32704
(2017
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.