Maxwell's fish-eye is a paradigm for an absolute optical instrument with a refractive index deduced from the stereographic projection of a sphere on a plane. We investigate experimentally the dynamics of flexural waves in a thin plate with a thickness varying according to the Maxwell fish-eye index profile and a clamped boundary. We demonstrate subwavelength focusing and temporal pulse compression at the image point. This is achieved by introducing a sink emitting a cancelling signal optimally shaped using a time-reversal procedure. Perfect absorption and outward going wave cancellation at the focus point are demonstrated. The time evolution of the kinetic energy stored inside the cavity reveals that the sink absorbs energy out of the plate ten times faster than the natural decay rate.

1.
H.
Harman
,
The Scientific Letters and Papers of James Clerk Maxwell
(
Cambridge University Press
,
1990
), Vol.
1(1846–1862)
, p.
024017
.
2.
T.
Tyc
,
L.
Herzánová
,
M.
Šarbort
, and
K.
Bering
,
New J. Phys.
13
,
115004
(
2011
).
3.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
,
1780
(
2006
).
5.
U.
Leonhardt
and
T.
Tyc
,
Science
323
,
110
(
2009
).
6.
T.
Tyc
and
A. J.
Danner
,
Phys. Rev. A
96
,
053838
(
2017
).
7.
O.
Bitton
,
R.
Bruch
, and
U.
Leonhardt
,
Phys. Rev. Appl.
10
,
044059
(
2018
).
8.
Y.
Zhou
,
J.
Li
,
W.
Xiao
, and
H.
Chen
,
Opt. Lett.
47
,
3820
(
2022
).
9.
Y.
Zhou
,
Z.
Hao
,
P.
Zhao
, and
H.
Chen
,
Phys. Rev. Appl.
17
,
034039
(
2022
).
10.
Y.
Zhou
,
J.
Li
, and
H.
Chen
,
Laser Photonics Rev.
16
,
2200273
(
2022
).
11.
A.
Climente
,
D.
Torrent
, and
J.
Sánchez-Dehesa
,
Appl. Phys. Lett.
105
,
064101
(
2014
).
12.
G.
Lefebvre
,
M.
Dubois
,
R.
Beauvais
,
Y.
Achaoui
,
R. K.
Ing
,
S.
Guenneau
, and
P.
Sebbah
,
Appl. Phys. Lett.
106
,
024101
(
2015
).
13.
K.
Tang
,
C.
Xu
,
S.
Guenneau
, and
P.
Sebbah
,
Adv. Funct. Mater.
31
,
2009266
(
2021
).
14.
15.
D.
Cassereau
and
M.
Fink
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
579
(
1992
).
16.
17.
18.
S.
Guenneau
,
A.
Diatta
, and
R.
McPhedran
,
J. Mod. Opt.
57
,
511
(
2010
).
19.
F.
Sun
,
X.
Ge
, and
S.
He
,
Prog. Electromagn. Res.
110
,
313
(
2010
).
21.
S.
He
,
F.
Sun
,
S.
Guo
,
S.
Zhong
,
L.
Lan
,
W.
Jiang
,
Y.
Ma
, and
T.
Wu
,
Prog. Electromagn. Res.
152
,
1
(
2015
).
22.
T.
Tyc
and
A.
Danner
,
New J. Phys.
16
,
063001
(
2014
).
23.
C.
Draeger
and
M.
Fink
,
Phys. Rev. Lett.
79
,
407
(
1997
).
24.
C.
Draeger
and
M.
Fink
,
J. Acoust. Soc. Am.
105
,
611
(
1999
).
25.
J.
de Rosny
and
M.
Fink
,
Phys. Rev. Lett.
89
,
124301
(
2002
).
26.
G.
Ma
,
X.
Fan
,
F.
Ma
,
J.
de Rosny
,
P.
Sheng
, and
M.
Fink
,
Nat. Phys.
14
,
608
(
2018
).
27.
R. K.
Luneburg
,
Mathematical Theory of Optics
(
Univ of California Press
,
1966
).
28.
U.
Leonhardt
and
S.
Sahebdivan
,
Phys. Rev. A
92
,
053848
(
2015
).
29.
S. M.
Kuo
and
D. R.
Morgan
,
Proc. IEEE
87
,
943
(
1999
).
30.
V. V.
Krylov
,
Acta Acust. Acust.
90
,
830
–837 (
2004
).
31.
V.
Kralovic
and
V. V.
Krylov
, in
Proceedings of the Institute of Acoustics
(
2007
).
32.
E.
Bowyer
and
V. V.
Krylov
,
Appl. Acoust.
76
,
359
(
2014
).
33.
L.
Tang
and
L.
Cheng
,
J. Sound Vib.
391
,
116
(
2017
).
34.
J.
Deng
,
O.
Guasch
, and
L.
Zheng
,
J. Sound Vib.
458
,
109
(
2019
).
35.
A.
Pelat
,
F.
Gautier
,
S. C.
Conlon
, and
F.
Semperlotti
,
J. Sound Vib.
476
,
115316
(
2020
).
36.
S. J.
Elliott
and
M.
Zilletti
,
J. Sound Vib.
333
,
2185
(
2014
).
37.
K.
Yi
,
M.
Collet
,
S.
Chesne
, and
M.
Monteil
,
Mech. Syst. Signal Process.
93
,
255
(
2017
).

Supplementary Material

You do not currently have access to this content.