The lack of p-type doping has impeded the development of vertical gallium oxide (Ga2O3) devices. Current blocking layers (CBLs) using implanted deep acceptors have been used to demonstrate vertical devices. This paper presents a pioneering demonstration of in situ Mg-doped β-Ga2O3 CBLs grown using metal–organic chemical vapor deposition. The Mg-doping density during growth was calibrated by quantitative secondary ion mass spectroscopy. Electrical test structures were designed with in situ Mg doped layers with various targeted Mg doping concentrations. The effectiveness of the CBL is characterized by using temperature-dependent current–voltage measurements using n-Mg-doped-n structures, providing crucial insight into the underlying mechanisms. Pulsed measurements show similar blocking characteristics as DC. To further validate the experimental results, a TCAD simulation is performed, and the electrically active effective doping is found to be dependent on the Mg-doping density, offering an alternate perspective on the optimization of CBL performance. Breakdown measurements show a peak 4 MV/cm field strength.

1.
Y.
Zhang
and
T.
Palacios
, “
(Ultra) wide-bandgap vertical power FinFETs
,”
IEEE Trans. Electron Devices
67
(
10
),
3960
3971
(
2020
).
2.
A. Q.
Huang
, “
Power semiconductor devices for smart grid and renewable energy systems
,”
Proc. IEEE
105
,
85
152
(
2019
).
3.
H.
Amano
,
Y.
Baines
,
E.
Beam
,
M.
Borga
,
T.
Bouchet
,
P. R.
Chalker
,
M.
Charles
,
K. J.
Chen
,
N.
Chowdhury
, and
R.
Chu
, “
The 2018 GaN power electronics roadmap
,”
J. Phys. D: Appl. Phys.
51
(
16
),
163001
(
2018
).
4.
M.
Higashiwaki
,
A.
Kuramata
,
H.
Murakami
, and
Y.
Kumagai
, “
State-of-the-art technologies of gallium oxide power devices
,”
J. Phys. D: Appl. Phys.
50
(
33
),
333002
(
2017
).
5.
Z.
Hu
,
H.
Zhou
,
Q.
Feng
,
J.
Zhang
,
C.
Zhang
,
K.
Dang
,
Y.
Cai
,
Z.
Feng
,
Y.
Gao
, and
X.
Kang
, “
Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2
,”
IEEE Electron Device Lett.
39
(
10
),
1564
1567
(
2018
).
6.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
van de Walle
, and
E.
Bellotti
, “
Ultrawide‐bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
(
1
),
1600501
(
2018
).
7.
J.
Yang
,
C.
Fares
,
R.
Elhassani
,
M.
Xian
,
F.
Ren
,
S. J.
Pearton
,
M.
Tadjer
, and
A.
Kuramata
, “
Reverse breakdown in large area, field-plated, vertical β-Ga2O3 rectifiers
,”
ECS J. Solid State Sci. Technol.
8
(
7
),
Q3159
(
2019
).
8.
X.
She
,
A. Q.
Huang
,
O.
Lucia
, and
B.
Ozpineci
, “
Review of silicon carbide power devices and their applications
,”
IEEE Trans. Ind. Electron.
64
(
10
),
8193
8205
(
2017
).
9.
T.
Onuma
,
S.
Saito
,
K.
Sasaki
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
, and
M.
Higashiwaki
, “
Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy
,”
Jpn. J. Appl. Phys., Part 1
54
(
11
),
112601
(
2015
).
10.
M.
Higashiwaki
and
G. H.
Jessen
, “
Guest editorial: The dawn of gallium oxide microelectronics
,”
Appl. Phys. Lett.
112
(
6
),
060401
(
2018
).
11.
E. G.
Víllora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
, “
Large-size β-Ga2O3 single crystals and wafers
,”
J. Cryst. Growth
270
(
3–4
),
420
426
(
2004
).
12.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys., Part 1
55
(
12
),
1202A2
(
2016
).
13.
H.
Aida
,
K.
Nishiguchi
,
H.
Takeda
,
N.
Aota
,
K.
Sunakawa
, and
Y.
Yaguchi
, “
Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method
,”
Jpn. J. Appl. Phys., Part 1
47
(
11R
),
8506
(
2008
).
14.
W.
Li
,
Z.
Hu
,
K.
Nomoto
,
Z.
Zhang
,
J.-Y.
Hsu
,
Q. T.
Thieu
,
K.
Sasaki
,
A.
Kuramata
,
D.
Jena
, and
H. G.
Xing
, “
1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of <1 μA/cm2
,”
Appl. Phys. Lett.
113
(
20
),
202101
(
2018
).
15.
Y.
Yao
,
R. F.
Davis
, and
L. M.
Porter
, “
Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties
,”
J. Electron. Mater.
46
(
4
),
2053
2060
(
2017
).
16.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M. H.
Wong
, and
D.
Krishnamurthy
, “
Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics
,”
Appl. Phys. Lett.
103
,
123511
(
2013
).
17.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V
,”
IEEE Electron Device Lett.
37
(
2
),
212
215
(
2016
).
18.
M. H.
Wong
,
K.
Goto
,
Y.
Morikawa
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer
,”
Appl. Phys. Express
11
(
6
),
064102
(
2018
).
19.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
, “
Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage
,”
IEEE Electron Device Lett.
41
(
6
),
836
839
(
2020
).
20.
Y.
Lv
,
H.
Liu
,
X.
Zhou
,
Y.
Wang
,
X.
Song
,
Y.
Cai
,
Q.
Yan
,
C.
Wang
,
S.
Liang
, and
J.
Zhang
, “
Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2
,”
IEEE Electron Device Lett.
41
(
4
),
537
540
(
2020
).
21.
C.
Wang
,
H.
Zhou
,
J.
Zhang
,
W.
Mu
,
J.
Wei
,
Z.
Jia
,
X.
Zheng
,
X.
Luo
,
X.
Tao
, and
Y.
Hao
, “
Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2
,”
Appl. Phys. Lett.
120
(
11
),
112101
(
2022
).
22.
Y.
Lv
,
X.
Zhou
,
S.
Long
,
X.
Song
,
Y.
Wang
,
S.
Liang
,
Z.
He
,
T.
Han
,
X.
Tan
, and
Z.
Feng
, “
Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2
,”
IEEE Electron Device Lett.
40
(
1
),
83
86
(
2018
).
23.
H.
Zhou
,
K.
Maize
,
G.
Qiu
,
A.
Shakouri
, and
P. D.
Ye
, “
β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect
,”
Appl. Phys. Lett.
111
(
9
),
092102
(
2017
).
24.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
, “
1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs
,”
IEEE Electron Device Lett.
39
(
9
),
1385
1388
(
2018
).
25.
S.
Saha
,
L.
Meng
,
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
H.
Zhao
, and
U.
Singisetti
, “
Schottky diode characteristics on high-growth rate LPCVD β-Ga2O3 films on (010) and (001) Ga2O3 substrates
,”
Appl. Phys. Lett.
120
(
12
),
122106
(
2022
).
26.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
, “
First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases
,”
Phys. Rev. B
74
(
19
),
195123
(
2006
).
27.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
, “
On the feasibility of p-type Ga2O3
,”
Appl. Phys. Lett.
112
(
3
),
032108
(
2018
).
28.
K.
Yamaguchi
, “
First principles study on electronic structure of β-Ga2O3
,”
Solid State Commun.
131
(
12
),
739
744
(
2004
).
29.
J. L.
Lyons
, “
A survey of acceptor dopants for β-Ga2O3
,”
Semicond. Sci. Technol.
33
(
5
),
05LT02
(
2018
).
30.
H.
Peelaers
,
J. L.
Lyons
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
Deep acceptors and their diffusion in Ga2O3
,”
APL Mater.
7
(
2
),
022519
(
2019
).
31.
T.
Gake
,
Y.
Kumagai
, and
F.
Oba
, “
First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs
,”
Phys. Rev. Mater.
3
(
4
),
044603
(
2019
).
32.
M. H.
Wong
,
K.
Goto
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, in
75th Annual Device Research Conference (DRC
) (
IEEE
,
2017
), pp.
1
2
.
33.
M. H.
Wong
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with n-ion-implanted blocker
,”
IEEE Electron Device Lett.
41
(
2
),
296
299
(
2020
).
34.
M. H.
Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping
,”
IEEE Electron Device Lett.
40
(
3
),
431
434
(
2019
).
35.
K.
Tetzner
,
A.
Thies
,
E.
Bahat Treidel
,
F.
Brunner
,
G.
Wagner
, and
J.
Würfl
, “
Selective area isolation of β-Ga2O3 using multiple energy nitrogen ion implantation
,”
Appl. Phys. Lett.
113
(
17
),
172104
(
2018
).
36.
M. H.
Wong
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Aperture-limited conduction and its possible mechanism in ion-implanted current aperture vertical β-Ga2O3 MOSFETs
,”
Appl. Phys. Lett.
118
(
1
),
012102
(
2021
).
37.
Z.
Feng
,
A. F. M. A. U.
Bhuiyan
,
N. K.
Kalarickal
,
S.
Rajan
, and
H.
Zhao
, “
Mg acceptor doping in MOCVD (010) β-Ga2O3
,”
Appl. Phys. Lett.
117
(
22
),
222106
(
2020
).
38.
M. H.
Wong
,
C.-H.
Lin
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Acceptor doping of β-Ga2O3 by Mg and N ion implantations
,”
Appl. Phys. Lett.
113
(
10
),
102103
(
2018
).
39.
K.
Tetzner
,
E. B.
Treidel
,
O.
Hilt
,
A.
Popp
,
S.
Bin Anooz
,
G.
Wagner
,
A.
Thies
,
K.
Ickert
,
H.
Gargouri
, and
J.
Würfl
, “
Lateral 1.8 kV β -Ga2O3 MOSFET with 155 MW/cm2 power figure of merit
,”
IEEE Electron Device Lett.
40
(
9
),
1503
1506
(
2019
).
40.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
, and
N.
Moser
, “
Donors and deep acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
(
6
),
062101
(
2018
).
41.
K.
Zeng
,
R.
Soman
,
Z.
Bian
,
S.
Jeong
, and
S.
Chowdhury
, “
Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer
,”
IEEE Electron Device Lett.
43
(
9
),
1527
1530
(
2022
).
42.
C. A.
Lenyk
,
T. D.
Gustafson
,
S. A.
Basun
,
L. E.
Halliburton
, and
N. C.
Giles
, “
Experimental determination of the (0/−) level for Mg acceptors in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
116
(
14
),
142101
(
2020
).
43.
B. E.
Kananen
,
L. E.
Halliburton
,
E. M.
Scherrer
,
K. T.
Stevens
,
G. K.
Foundos
,
K. B.
Chang
, and
N. C.
Giles
, “
Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals
,”
Appl. Phys. Lett.
111
(
7
),
072102
(
2017
).
44.
M. D.
McCluskey
, “
Point defects in Ga2O3
,”
J. Appl. Phys.
127
(
10
),
101101
(
2020
).
45.
R.
Sharma
,
M. E.
Law
,
F.
Ren
,
A. Y.
Polyakov
, and
S. J.
Pearton
, “
Diffusion of dopants and impurities in β-Ga2O3
,”
J. Vac. Sci. Technol. A
39
(
6
),
060801
(
2021
).
46.
Z.
Feng
,
A. F. M.
Anhar Uddin Bhuiyan
,
M. R.
Karim
, and
H.
Zhao
, “
MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties
,”
Appl. Phys. Lett.
114
(
25
),
250601
(
2019
).
47.
K.
Ghosh
and
U.
Singisetti
, “
Impact ionization in β-Ga2O3
,”
J. Appl. Phys.
124
(
8
),
085707
(
2018
).
48.
H.
Kim
,
S.
Tarelkin
,
A.
Polyakov
,
S.
Troschiev
,
S.
Nosukhin
,
M.
Kuznetsov
, and
J.
Kim
, “
Ultrawide-bandgap pn heterojunction of diamond/β-Ga2O3 for a solar-blind photodiode
,”
ECS J. Solid State Sci. Technol.
9
(
4
),
045004
(
2020
).

Supplementary Material

You do not currently have access to this content.