In this work, we report a pixel reassignment based super-resolution reconstruction algorithm for structured illumination microscopy (entitled PR-SIM). PR-SIM provides a twofold theoretical resolution enhancement by reassigning the pixels in raw SIM images with respect to the center of each illumination fringe and applying further deconvolution. By comparing with frequency domain based algorithms, PR-SIM is more immune to fringe distortion and, hence, it is more suited for large-field SIM in that it processes the raw images locally. Meanwhile, the reconstruction speed of PR-SIM can be enhanced by skipping empty regions in the image and further enhanced by employing GPU-base parallel calculation. Overall, we can envisage that the PR-SIM can be extended for other illumination modulation based microscopic techniques.

1.
R.
Heintzmann
and
C.
Cremer
, “
Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating
,”
Proc. SPIE
3568
,
185
(
1999
).
2.
M. G. L.
Gustafsson
, “
Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy
,”
J. Microsc.
198
,
82
87
(
2000
).
3.
M. G. L.
Gustafsson
, “
Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
13081
13086
(
2005
).
4.
B.-J.
Chang
,
L.-J.
Chou
,
Y.-C.
Chang
, and
S.-Y.
Chiang
, “
Isotropic image in structured illumination microscopy patterned with a spatial light modulator
,”
Opt. Express
17
,
14710
14721
(
2009
).
5.
K.
Wen
,
X.
Fang
,
Y.
Ma
,
M.
Liu
,
S.
An
,
J.
Zheng
,
T.
Kozacki
, and
P.
Gao
, “
Large-field structured illumination microscopy based on 2D grating and a spatial light modulator
,”
Opt. Lett.
47
,
2666
2669
(
2022
).
6.
J.
Zheng
,
X.
Fang
,
K.
Wen
,
J.
Li
,
Y.
Ma
,
M.
Liu
,
S.
An
,
J.
Li
,
Z.
Zalevsky
, and
P.
Gao
, “
Large-field lattice structured illumination microscopy
,”
Opt. Express
30
,
27951
27966
(
2022
).
7.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
, “
Imaging intracellular fluorescent proteins at nanometer resolution
,”
Science
313
,
1642
1645
(
2006
).
8.
M.
Bates
,
B.
Huang
,
G. T.
Dempsey
, and
X.
Zhuang
, “
Multicolor super-resolution imaging with photo-switchable fluorescent probes
,”
Science
317
,
1749
1753
(
2007
).
9.
G.
Donnert
,
J.
Keller
,
R.
Medda
,
M. A.
Andrei
,
S. O.
Rizzoli
,
R.
Lührmann
,
R.
Jahn
,
C.
Eggeling
, and
S. W.
Hell
, “
Macromolecular-scale resolution in biological fluorescence microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
11440
11445
(
2006
).
10.
K. I.
Willig
,
S. O.
Rizzoli
,
V.
Westphal
,
R.
Jahn
, and
S. W.
Hell
, “
STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis
,”
Nature
440
,
935
939
(
2006
).
11.
P.
Gao
and
G. U.
Nienhaus
, “
Precise background subtraction in stimulated emission double depletion nanoscopy
,”
Opt. Lett.
42
,
831
834
(
2017
).
12.
R.
Heintzmann
and
M. G. L.
Gustafsson
, “
Subdiffraction resolution in continuous samples
,”
Nat. Photonics
3
,
362
364
(
2009
).
13.
E. H.
Rego
,
L.
Shao
,
J. J.
Macklin
,
L.
Winoto
,
G. A.
Johansson
,
N.
Kamps-Hughes
,
M. W.
Davidson
, and
M. G. L.
Gustafsson
, “
Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E135
E143
(
2012
).
14.
M.
Müller
,
V.
Mönkemöller
,
S.
Hennig
,
W.
Hübner
, and
T.
Huser
, “
Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ
,”
Nat. Commun.
7
,
10980
(
2016
).
15.
A.
Lal
,
C.
Shan
, and
P.
Xi
, “
Structured illumination microscopy image reconstruction algorithm
,”
IEEE J. Select. Top. Quantum Electron.
22
,
50
63
(
2016
).
16.
K.
Wicker
,
O.
Mandula
,
G.
Best
,
R.
Fiolka
, and
R.
Heintzmann
, “
Phase optimisation for structured illumination microscopy
,”
Opt. Express
21
,
2032
2049
(
2013
).
17.
W.
Lukosz
, “
Notizen: Ein Verfahren zur optischen Abbildung mit einem über die klassische Auflösungsgrenze hinausgehenden Auflösungsvermögen
,”
Z. Naturforsch., A
18
,
436
438
(
1963
).
18.
P. T. C.
So
,
H.-S.
Kwon
, and
C. Y.
Dong
, “
Resolution enhancement in standing-wave total internal reflection microscopy: A point-spread-function engineering approach
,”
J. Opt. Soc. Am. A.
18
,
2833
2845
(
2001
).
19.
D.
Dan
,
Z.
Wang
,
X.
Zhou
,
M.
Lei
,
T.
Zhao
,
J.
Qian
,
X.
Yu
,
S.
Yan
,
J.
Min
,
P. R.
Bianco
, and
B.
Yao
, “
Rapid image reconstruction of structured illumination microscopy directly in the spatial domain
,”
IEEE Photonics J.
13
,
1
11
(
2021
).
20.
S.
Tu
,
Q.
Liu
,
X.
Liu
,
W.
Liu
,
Z.
Zhang
,
T.
Luo
,
C.
Kuang
,
X.
Liu
, and
X.
Hao
, “
Fast reconstruction algorithm for structured illumination microscopy
,”
Opt. Lett.
45
,
1567
1570
(
2020
).
21.
C. J. R.
Sheppard
, “
Super-resolution in confocal imaging
,”
Optik
80
,
53
54
(
1988
).
22.
C. B.
Müller
and
J.
Enderlein
, “
Image scanning microscopy
,”
Phys. Rev. Lett.
104
,
198101
(
2010
).
23.
I.
Gregor
and
J.
Enderlein
, “
Image scanning microscopy
,”
Curr. Opin. Chem. Biol.
51
,
74
83
(
2019
).
24.
C. J. R.
Sheppard
,
S. B.
Mehta
, and
R.
Heintzmann
, “
Superresolution by image scanning microscopy using pixel reassignment
,”
Opt. Lett.
38
,
2889
2892
(
2013
).
25.
S.
Roth
,
C. J. R.
Sheppard
,
K.
Wicker
, and
R.
Heintzmann
, “
Optical photon reassignment microscopy (OPRA)
,”
Opt. Nano.
2
,
1
6
(
2013
).
26.
A. G.
York
,
S. H.
Parekh
,
D. D.
Nogare
,
R. S.
Fischer
,
K.
Temprine
,
M.
Mione
,
A. B.
Chitnis
,
C. A.
Combs
, and
H.
Shroff
, “
Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy
,”
Nat. Methods
9
,
749
754
(
2012
).
27.
A. G.
York
,
P.
Chandris
,
D. D.
Nogare
,
J.
Head
,
P.
Wawrzusin
,
R. S.
Fischer
,
A.
Chitnis
, and
H.
Shroff
, “
Instant super-resolution imaging in live cells and embryos via analog image processing
,”
Nat. Methods
10
,
1122
1126
(
2013
).
28.
I.
Gregor
,
M.
Spiecker
,
R.
Petrovsky
,
J.
Großhans
,
R.
Ros
, and
J.
Enderlein
, “
Rapid nonlinear image scanning microscopy
,”
Nat. Methods
14
,
1087
1089
(
2017
).
29.
L. P.
Yaroslavsky
and
H. J.
Caulfield
, “
Deconvolution of multiple images of the same object
,”
Appl. Opt.
33
,
2157
2162
(
1994
).
30.
M. G.
Gustafsson
,
L.
Shao
,
P. M.
Carlton
,
C. R.
Wang
,
IN.
Golubovskaya
,
W. Z.
Cande
,
D. A.
Agard
, and
J. W.
Sedat
, “
Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
,”
Biophys. J.
94
,
4957
4970
(
2008
).
31.
S. A.
Shroff
,
J. R.
Fienup
, and
D. R.
Williams
, “
Phase-shift estimation in sinusoidally illuminated images for lateral superresolution
,”
J. Opt. Soc. Am. A.
26
,
413
424
(
2009
).
32.
E.
Mudry
,
K.
Belkebir
,
J.
Girard
,
J.
Savatier
,
E.
Le Moal
,
C.
Nicoletti
,
M.
Allain
, and
A.
Sentenac
, “
Structured illumination microscopy using unknown speckle patterns
,”
Nat. Photonics
6
,
312
315
(
2012
).
33.
P. T.
Brown
,
R.
Kruithoff
,
G. J.
Seedorf
, and
D. P.
Shepherd
, “
Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device
,”
Biomed. Opt. Express
12
,
3700
3716
(
2021
).
34.
A.
Descloux
,
K. S.
Grußmayer
, and
A.
Radenovic
, “
Parameter-free image resolution estimation based on decorrelation analysis
,”
Nat. Methods
16
,
918
924
(
2019
).
35.
C.
Qiao
,
D.
Li
,
Y.
Guo
,
C.
Liu
,
T.
Jiang
,
Q.
Dai
, and
D.
Li
, “
Evaluation and development of deep neural networks for image super-resolution in optical microscopy
,”
Nat. Methods
18
,
194
202
(
2021
).
36.
D. P.
Hoffman
and
E.
Betzig
, “
Tiled reconstruction improves structured illumination microscopy
,”
bioRxiv
(
2020
).
You do not currently have access to this content.